scholarly journals Securing emergent behaviour in swarm robotics

2022 ◽  
Vol 64 ◽  
pp. 103047
Author(s):  
Liqun Chen ◽  
Siaw-Lynn Ng
2020 ◽  
Vol 25 (4) ◽  
pp. 656-665
Author(s):  
Mohammad Parhizkar ◽  
Giovanna Di Marzo Serugendo ◽  
Jahn Nitschke ◽  
Louis Hellequin ◽  
Assane Wade ◽  
...  

Abstract By studying and modelling the behaviour of Dictyostelium discoideum, we aim at deriving mechanisms useful for engineering collective artificial intelligence systems. This paper discusses a selection of agent-based models reproducing second-order behaviour of Dictyostelium discoideum, occurring during the migration phase; their corresponding biological illustrations; and how we used them as an inspiration for transposing this behaviour into swarms of Kilobots. For the models, we focus on: (1) the transition phase from first- to second-order emergent behaviour; (2) slugs’ uniform distribution around a light source; and (3) the relationship between slugs’ speed and length occurring during the migration phase of the life cycle of D. discoideum. Results show the impact of the length of the slug on its speed and the effect of ammonia on the distribution of slugs. Our computational results show similar behaviour to our biological experiments, using Ax2(ka) strain. For swarm robotics experiments, we focus on the transition phase, slugs’ chaining, merging and moving away from each other.


2020 ◽  
Vol 25 (4) ◽  
pp. 643-655
Author(s):  
Mohammad Parhizkar ◽  
Giovanna Di Marzo Serugendo ◽  
Jahn Nitschke ◽  
Louis Hellequin ◽  
Assane Wade ◽  
...  

Abstract Collective behaviour in nature provides a source of inspiration to engineer artificial collective adaptive systems, due to their mechanisms favouring adaptation to environmental changes and enabling complex emergent behaviour to arise from a relatively simple behaviour of individual entities. As part of our ongoing research, we study the social amoeba Dictyostelium discoideum to derive agent-based models and mechanisms that we can then exploit in artificial systems, in particular in swarm robotics. In this paper, we present a selection of agent-based models of the aggregation phase of D. discoideum, their corresponding biological illustrations and how we used them as an inspiration for transposing this behaviour into swarms of Kilobots. We focus on the stream-breaking phenomenon occurring during the aggregation phase of the life cycle of D. discoideum. Results show that the breakup of aggregation streams depends on cell density, motility, motive force and the concentration of cAMP and CF. The breakup also comes with the appearance of late centres. Our computational results show similar behaviour to our biological experiments, using Ax2(ka) strain. For swarm robotics experiments, we focus on signalling and aggregation towards a centre.


Author(s):  
Wai-Tat Fu ◽  
Jessie Chin ◽  
Q. Vera Liao

Cognitive science is a science of intelligent systems. This chapter proposes that cognitive science can provide useful perspectives for research on technology-mediated human-information interaction (HII) when HII is cast as emergent behaviour of a coupled intelligent system. It starts with a review of a few foundational concepts related to cognitive computations and how they can be applied to understand the nature of HII. It discusses several important properties of a coupled cognitive system and their implication to designs of information systems. Finally, it covers how levels of abstraction have been useful for cognitive science, and how these levels can inform design of intelligent information systems that are more compatible with human cognitive computations.


2021 ◽  
Vol 62 ◽  
pp. 100845
Author(s):  
Mi Gan ◽  
Qiujun Qian ◽  
Dandan Li ◽  
Yi Ai ◽  
Xiaobo Liu

Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1500
Author(s):  
Sara Cornejo-Bueno ◽  
Mihaela I. Chidean ◽  
Antonio J. Caamaño ◽  
Luis Prieto-Godino ◽  
Sancho Salcedo-Sanz

This paper presents a novel methodology for Climate Network (CN) construction based on the Kullback-Leibler divergence (KLD) among Membership Probability (MP) distributions, obtained from the Second Order Data-Coupled Clustering (SODCC) algorithm. The proposed method is able to obtain CNs with emergent behaviour adapted to the variables being analyzed, and with a low number of spurious or missing links. We evaluate the proposed method in a problem of CN construction to assess differences in wind speed prediction at different wind farms in Spain. The considered problem presents strong local and mesoscale relationships, but low synoptic scale relationships, which have a direct influence in the CN obtained. We carry out a comparison of the proposed approach with a classical correlation-based CN construction method. We show that the proposed approach based on the SODCC algorithm and the KLD constructs CNs with an emergent behaviour according to underlying wind speed prediction data physics, unlike the correlation-based method that produces spurious and missing links. Furthermore, it is shown that the climate network construction method facilitates the evaluation of symmetry properties in the resulting complex networks.


2021 ◽  
Author(s):  
Chijung Jung ◽  
Ali Ahad ◽  
Jinho Jung ◽  
Sebastian Elbaum ◽  
Yonghwi Kwon
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document