scholarly journals The effect of biodiesel and CeO2 nanoparticles blends on CRDI diesel engine: A special focus on combustion, particle number, PM2.5 species, organic compound and gaseous emissions

Author(s):  
Abdulfatah Abdu Yusuf ◽  
Freddie L. Inambao ◽  
Jeffrey Dankwa Ampah
Author(s):  
Khawar Mohiuddin ◽  
Minhoo Choi ◽  
Junkyu Park ◽  
Sungwook Park

Nozzle hydraulic flow rate is a critical parameter that affects the combustion process and plays a vital role in the production of emissions from a diesel engine. In this study, injection characteristics, such as normalized injection rate and spray tip penetration, were analyzed for different hydraulic flow rate injectors with the help of spray experiments. To further investigate the effects of hydraulic flow rate on engine-out particulate and gaseous emissions, engine experiments were performed for different values of hydraulic flow rate in multiple injectors. Various operating conditions and loading configurations were examined, and the effects of varying start of injection and exhaust gas recirculation rates for different hydraulic flow rates were analyzed. A separate Pegasor Particle Sensor (PPS-M) sensor was used to measure and collect data on the particle number, and an analysis was conducted to investigate the relation of particle number with hydraulic flow rate, injection timing, and exhaust gas recirculation rate. Results of the spray experiment exhibited a decreasing injection duration and increasing spray tip penetration with increasing hydraulic flow rate. Effect of hydraulic flow rate on combustion and emission characteristics were analyzed from engine experiment results. Least ignition delay was achieved using a smaller hole diameter, retarded injection timing, and lowest EGR%. Higher hydraulic flow rate with retarded injection timing and higher EGR% helped in reduction of NOx emissions and brake-specific fuel consumption, but particulate emissions were increased. Best particulate matter–NOx trade-off was achieved with lowest hydraulic flow rate.


Author(s):  
G E Andrews ◽  
R Everest ◽  
D Jepson ◽  
S W Pang

BS 6680 requires the efficiency of coalmine diesel engine exhaust pollution-reduction devices to be determined. The efficiency of an Englehard PTX catalyst and water scubber for both particulate and gaseous emissions reduction was determined using a 533 cc single-cylinder Petter AVI direct injection diesel engine. The separate and combined influence of the two exhaust devices was determined. The water scrubber acted as aflame trap as well as an exhaust particulate trap. The catalyst gave a substantial reduction in CO and UHC gaseous emissions and particulate SOF emissions for exhaust temperatures above 250°C. However, the high MW particulate SOF, including the PAH, had a 70 per cent reduction for catalyst temperatures as low as 200°C. The water scrubber was the dominant particulate removal device, although the catalyst removal efficiency was significant for temperatures above 250° C. The scrubber also had a significant influence on the reduction in NOx emissions, with a 30 per cent removal at high exhaust temperatures.


Author(s):  
Seppo A. Niemi ◽  
Juha M. Tyrva¨inen ◽  
Mika J. Laure´n ◽  
Va¨ino¨ O. K. Laiho

In the near future, crude oil based fuels must little by little be replaced by biofuels both in the region of the European Union (EU) and in the United States. Bearing this in mind, a Finnish-made off-road diesel engine was tested with a biofuel-diesel fuel blend in the Internal Combustion Engine (ICE) Laboratory of Turku Polytechnic, Finland. The biofuel was cold-pressed mustard seed oil (MSO). The engine operation, performance and exhaust emissions were investigated using a blend of 30 mass-% MSO and 70 mass-% diesel fuel oil (DFO). The injection timing of the engine was retarded considerably in order to reduce NOx emissions drastically. The main target was then to find out, whether the blended oxygen containing MSO would speed up the combustion so that the particulate matter (PM) emissions would remain unchanged or even decrease despite the injection retardation. As secondary tasks of the study, the NOx readings of the CLD and FTIR analyzers were compared, and exhaust contents of unregulated compounds were determined. Retarding the injection timing resulted in a significant decrease of NOx emissions, but in an increase in smoke, as expected. At retarded timing, the NOx emissions remained almost unchanged, but the amount of smoke decreased when the engine was run with the fuel blend instead of DFO. At retarded timing at rated speed, the number of ultra-fine particles decreased, but the amount of large particles increased with DFO at full load. At 10% load, however, the particle number increased in the entire particle size range due to retardation. At both loads, the use of the fuel blend slightly reduced larger particles, whereas the number of small particles somewhat increased. At full load at an intermediate speed of 1500 rpm, the PM results were very similar to those obtained at rated speed. At 10% load with DFO, however, the injection retardation led to a higher number of larger particles, the smaller particles being at almost an unchanged level. With the fuel blend, the particle number was now higher within almost the whole particle diameter range than with DFO. Considerably higher NO2 contents were usually detected with FTIR than with CLD. The shape of the NOx result curves were rather similar independent of which one of the analyzers was used for measurements. The NOx contents were, however, generally some ten ppms higher with FTIR. The exhaust contents of unregulated compounds were usually low.


2009 ◽  
Vol 43 (16) ◽  
pp. 2632-2641 ◽  
Author(s):  
Jana Moldanová ◽  
Erik Fridell ◽  
Olga Popovicheva ◽  
Benjamin Demirdjian ◽  
Victoria Tishkova ◽  
...  

2009 ◽  
Vol 138 (3) ◽  
pp. 28-36
Author(s):  
Sathaporn CHUEPENG ◽  
Hongming XU ◽  
Athanasios TSOLAKIS ◽  
Mirosław WYSZYŃSKI ◽  
Jonathan HARLAND

The paper presents characterisations of nanoparticle number in exhaust gases from biodiesel blends (B30, 30% of RME by volume with ultra low sulphur diesel fuel, ULSD) combustion in a V6 diesel engine equipped with a common rail fuel injection system. The engine was operated on three steady-state test points extracted from the New European Driving Cycle without engine hardware or the engine management system (EMS) modification. A fast differential mobility spectrometer was used to determine particle number size distribution based on electrical mobility equivalent diameter. The distribution was dependent on the engine operating condition and the rate of exhaust gas recirculation (EGR). The particle size in the nucleation mode from B30 combustion with and without EGR is smaller than that of ULSD while giving higher number concentration for all engine operating conditions tested. However, in the accumulation mode with and without EGR, the smaller sizes and the lower total numbers from B30 combustion were observed. For both fuels, EGR shows insignificant changes to the primary particle size but noticeable increase in particle size and number in the accumulation mode. In overall, compared to the ULSD case, the B30 combustion reduced particle size and lowered total particle number in exhaust gas emitted from the engine with EGR.


Sign in / Sign up

Export Citation Format

Share Document