Exhaust Emissions of an Off-Road Diesel Engine Driven With a Blend of Diesel Fuel and Mustard Seed Oil

Author(s):  
Seppo A. Niemi ◽  
Juha M. Tyrva¨inen ◽  
Mika J. Laure´n ◽  
Va¨ino¨ O. K. Laiho

In the near future, crude oil based fuels must little by little be replaced by biofuels both in the region of the European Union (EU) and in the United States. Bearing this in mind, a Finnish-made off-road diesel engine was tested with a biofuel-diesel fuel blend in the Internal Combustion Engine (ICE) Laboratory of Turku Polytechnic, Finland. The biofuel was cold-pressed mustard seed oil (MSO). The engine operation, performance and exhaust emissions were investigated using a blend of 30 mass-% MSO and 70 mass-% diesel fuel oil (DFO). The injection timing of the engine was retarded considerably in order to reduce NOx emissions drastically. The main target was then to find out, whether the blended oxygen containing MSO would speed up the combustion so that the particulate matter (PM) emissions would remain unchanged or even decrease despite the injection retardation. As secondary tasks of the study, the NOx readings of the CLD and FTIR analyzers were compared, and exhaust contents of unregulated compounds were determined. Retarding the injection timing resulted in a significant decrease of NOx emissions, but in an increase in smoke, as expected. At retarded timing, the NOx emissions remained almost unchanged, but the amount of smoke decreased when the engine was run with the fuel blend instead of DFO. At retarded timing at rated speed, the number of ultra-fine particles decreased, but the amount of large particles increased with DFO at full load. At 10% load, however, the particle number increased in the entire particle size range due to retardation. At both loads, the use of the fuel blend slightly reduced larger particles, whereas the number of small particles somewhat increased. At full load at an intermediate speed of 1500 rpm, the PM results were very similar to those obtained at rated speed. At 10% load with DFO, however, the injection retardation led to a higher number of larger particles, the smaller particles being at almost an unchanged level. With the fuel blend, the particle number was now higher within almost the whole particle diameter range than with DFO. Considerably higher NO2 contents were usually detected with FTIR than with CLD. The shape of the NOx result curves were rather similar independent of which one of the analyzers was used for measurements. The NOx contents were, however, generally some ten ppms higher with FTIR. The exhaust contents of unregulated compounds were usually low.

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3837 ◽  
Author(s):  
Sam Ki Yoon ◽  
Jun Cong Ge ◽  
Nag Jung Choi

This experiment investigates the combustion and emissions characteristics of a common rail direct injection (CRDI) diesel engine using various blends of pure diesel fuel and palm biodiesel. Fuel injection pressures of 45 and 65 MPa were investigated under engine loads of 50 and 100 Nm. The fuels studied herein were pure diesel fuel 100 vol.% with 0 vol.% of palm biodiesel (PBD0), pure diesel fuel 80 vol.% blended with 20 vol.% of palm biodiesel (PBD20), and pure diesel fuel 50 vol.% blended with 50 vol.% of palm biodiesel (PBD50). As the fuel injection pressure increased from 45 to 65 MPa under all engine loads, the combustion pressure and heat release rate also increased. The indicated mean effective pressure (IMEP) increased with an increase of the fuel injection pressure. In addition, for 50 Nm of the engine load, an increase to the fuel injection pressure resulted in a reduction of the brake specific fuel consumption (BSFC) by an average of 2.43%. In comparison, for an engine load of 100 Nm, an increase in the fuel injection pressure decreased BSFC by an average of 0.8%. Hydrocarbon (HC) and particulate matter (PM) decreased as fuel pressure increased, independent of the engine load. Increasing fuel injection pressure for 50 Nm engine load using PBD0, PBD20 and PBD50 decreased carbon monoxide (CO) emissions. When the fuel injection pressure was increased from 45 MPa to 65 MPa, oxides of nitrogen (NOx) emissions were increased for both engine loads. For a given fuel injection pressure, NOx emissions increased slightly as the biodiesel content in the fuel blend increased.


2015 ◽  
Vol 2015 (0) ◽  
pp. _G0700401--_G0700401-
Author(s):  
Kazutoshi MORI ◽  
Jun KAWASE ◽  
Ryuichi SUZUKI ◽  
Koji SORIMACHI ◽  
Kunihisa EGUCHI

2014 ◽  
Vol 619 ◽  
pp. 121-124
Author(s):  
Eun Sung Kim ◽  
Seung Hun Choi

Biodiesel fuel (BDF) can be effectively used as an alternative fuel in diesel engines. The BD, however, may affect performance and exhaust emissions of the diesel engine because it's physical and chemical properties, such as viscosity, compressibility and so on, are different from the diesel fuel. To investigate effects of an injection timing on characteristics of performance and exhaust emissions with the BDF in an IDI (Indirect injection) diesel engine, this research applied the BDF derived from soybean oil in this study. The engine was operated with six different injection timings from TDC to BTDC 12°CA and six different loads at engine speeds of 1500 and 2000 rpm. In less then the BDF 20, the diesel engine showed the similar trend compare to the diesel fuel. But, the best injection timing with the BD 50 was 2°CA retarded compare to the diesel fuel.


Author(s):  
Van Ha Pham ◽  
◽  
Ha Hiep Nguyen ◽  

The tests were carried out on the marine diesel engine operating by the load characteristic in seven modes, including five modes according to the test cycle D2 regulated by ISO 8178. Based on the experimental results obtained, the specific weighted NOx emissions and their average values were calculated and compared with IMO regulations. In addition, the study carried out a comparative experimental investigation on diesel fuel and dimethyl ether, and different injector opening pressures in the marine diesel engine to reduce its toxic exhaust emissions.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1176-1180
Author(s):  
Yang Xie ◽  
Yu Jie Hang ◽  
Hong Tao Wang ◽  
Hai Qing Shen ◽  
Cang Su Xu

Researchers have recently attempted to discover alternative energy sources that are accessible, technically viable, economically feasible, and environmentally acceptable. The objective of this study is to investigate regulated and unregulated exhaust emissions with petroleum diesel fuel and Jatrophabased biodiesel blends at proportions of 20%, 40%, 60%, 80% and 100% (v/v). This study examines three regulated emissions: CO, NMHC and NOx, and two typical unregulated emissions: SO2 and formaldehyde. The CO and formaldehyde emissions increase at low engine loads, and decrease at high engine loads. The NMHC and NOx emissions of the five fuels continuously decrease as biodiesel blends increase. Besides, SME fuels can also reduce the SO2 emissions.


Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


Author(s):  
Shuonan Xu ◽  
David Anderson ◽  
Mark Hoffman ◽  
Robert Prucka ◽  
Zoran Filipi

Energy security concerns and an abundant supply of natural gas in the USA provide the impetus for engine designers to consider alternative gaseous fuels in the existing engines. The dual-fuel natural-gas diesel engine concept is attractive because of the minimal design changes, the ability to preserve a high compression ratio of the baseline diesel, and the lack of range anxiety. However, the increased complexity of a dual-fuel engine poses challenges, including the knock limit at a high load, the combustion instability at a low load, and the transient response of an engine with directly injected diesel fuel and port fuel injection of compressed natural gas upstream of the intake manifold. Predictive simulations of the complete engine system are an invaluable tool for investigations of these conditions and development of dual-fuel control strategies. This paper presents the development of a phenomenological combustion model of a heavy-duty dual-fuel engine, aided by insights from experimental data. Heat release analysis is carried out first, using the cylinder pressure data acquired with both diesel-only and dual-fuel (diesel and natural gas) combustion over a wide operating range. A diesel injection timing correlation based on the injector solenoid valve pulse widths is developed, enabling the diesel fuel start of injection to be detected without extra sensors on the fuel injection cam. The experimental heat release trends are obtained with a hybrid triple-Wiebe function for both diesel-only operation and dual-fuel operation. The ignition delay period of dual-fuel operation is examined and estimated with a predictive correlation using the concept of a pseudo-diesel equivalence ratio. A four-stage combustion mechanism is discussed, and it is shown that a triple-Wiebe function has the ability to represent all stages of dual-fuel combustion. This creates a critical building block for modeling a heavy-duty dual-fuel turbocharged engine system.


Transport ◽  
2014 ◽  
Vol 29 (4) ◽  
pp. 440-448 ◽  
Author(s):  
Tomas Mickevičius ◽  
Stasys Slavinskas ◽  
Slawomir Wierzbicki ◽  
Kamil Duda

This paper presents a comparative analysis of the diesel engine performance and emission characteristics, when operating on diesel fuel and various diesel-biodiesel (B10, B20, B40, B60) blends, at various loads and engine speeds. The experimental tests were performed on a four-stroke, four-cylinder, direct injection, naturally aspirated, 60 kW diesel engine D-243. The in-cylinder pressure data was analysed to determine the ignition delay, the Heat Release Rate (HRR), maximum in-cylinder pressure and maximum pressure gradients. The influence of diesel-biodiesel blends on the Brake Specific Fuel Consumption (bsfc) and exhaust emissions was also investigated. The bench test results showed that when the engine running on blends B60 at full engine load and rated speed, the autoignition delay was 13.5% longer, in comparison with mineral diesel. Maximum cylinder pressure decreased about 1–2% when the amount of Rapeseed Methyl Ester (RME) expanded in the diesel fuel when operating at full load and 1400 min–1 speed. At rated mode, the minimum bsfc increased, when operating on biofuel blends compared to mineral diesel. The maximum brake thermal efficiency sustained at the levels from 0.3% to 6.5% lower in comparison with mineral diesel operating at full (100%) load. When the engine was running at maximum torque mode using diesel – RME fuel blends B10, B20, B40 and B60 the total emissions of nitrogen oxides decreased. At full and moderate load, the emission of carbon monoxide significantly raised as the amount of RME in fuel increased.


2012 ◽  
Vol 20 (3) ◽  
pp. 7-12 ◽  
Author(s):  
Ho-Jeong Gong ◽  
In-Goo Hwang ◽  
A-Hyun Ko ◽  
Cha-Lee Myung ◽  
Sim-Soo Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document