A zero-thermal-quenching phosphor Sr3La(AlO)3(BO3)4: Dy3+ for near ultraviolet excitation white-LEDs

2021 ◽  
pp. 118610
Author(s):  
Yiyao Qian ◽  
Dachuan Zhu ◽  
Yong Pu
Author(s):  
Haoran Li ◽  
Yujun Liang ◽  
Shiqi Liu ◽  
Weilun Zhang ◽  
Yanying Bi ◽  
...  

Highly-efficient and stable inorganic phosphors with high response to near-ultraviolet excitation are essential to the performance enhancement of the phosphor converted backlighting devices. Herein, highly-efficient green-emitting phosphors Sr4Al14O25:Ce,Tb (SAO:Ce3+,Tb3+) with...


2015 ◽  
Vol 1096 ◽  
pp. 486-491 ◽  
Author(s):  
Hong Mei Gao ◽  
Feng Yun Yan ◽  
Ling He

Sr3Al2O6:Eu3+ red phosphor was synthesized by co-precipitation and investigated their crystal structures and luminescent properties in detail. EuCl3 was used as rare earth sources to replace Eu2O3, which saving cost significantly. X-ray diffraction(XRD) and scanning electron microscopy (SEM) result indicated that the as-prepared phosphors was calcined at 1150 oC for 2h crystalized in cubic phase with space group of Pa-3 and uniform morphology. The average diameter of the phosphors were 1.8um. Excitation spectrum and emission spectrum results shows when Boric acid was added 3wt% and Eu3+ was added x=0.04((Sr1-xEux)3Al2O6), the red emission of Eu3+ centers was shown at peak of 611nm under near ultraviolet excitation with wavelength of 393nm. The emission spectrum was line spectrum. Luminous intensity achieved the optimum. The thermal quenching experiments indicated that it had thermal stability in the temperature of 20 oC -80 oC.


Author(s):  
Zhenyu Fang ◽  
Dan Yang ◽  
Youkui Zheng ◽  
Jialiang Song ◽  
Tongsheng Yang ◽  
...  

AbstractExploring outstanding rare-earth activated inorganic phosphors with good thermostability has always been a research focus for high-power white light-emitting diodes (LEDs). In this study, we report a Sm3+-activated KNa4B2P3O13 (KNBP) powder phase. Its particle morphology, photoluminescence properties, concentration quenching mechanism, thermal quenching mechanism, and chromatic properties are demonstrated. Upon the near-ultraviolet (NUV) irradiation of 402 nm, the powder phase exhibits orange-red visible luminescence performance, originating from typical 4G5/2→6HJ/2 (J = 5, 7, 9) transitions of Sm3+. Importantly, the photoluminescence performance has good thermostability, low correlated color temperature (CCT), and high color purity (CP), indicating its promising application in the NUV-pumped warm white LEDs.


2021 ◽  
Vol 234 ◽  
pp. 117968
Author(s):  
Yuelan Li ◽  
Yan Yu ◽  
Xue Zhong ◽  
Youmiao Liu ◽  
Long Chen ◽  
...  

2010 ◽  
Vol 654-656 ◽  
pp. 1130-1133 ◽  
Author(s):  
Christopher J. Summers ◽  
Hisham M. Menkara ◽  
Richard A. Gilstrap ◽  
Mazen Menkara ◽  
Thomas Morris

We report the development of new nanoparticle phosphors and quantum dot structures designed for applications to enhance the color rendering and efficiency of high brightness white LEDs, as well as for bio-sensing applications. The intrinsic problem of self-absorption, high toxicity, and high sensitivity to thermal quenching of conventional quantum dot systems has prevented their adoption to LED devices. Doped Cd-free quantum dots may circumvent these issues due to their distinct Stokes shift and improved stability at high temperature. We report on the modification of Mn-doped ZnSe/ZnS core-shell quantum dots for application to the (blue diode + yellow emitter) white LED system. Band gap tuning for 460 nm excitation, inorganic shell growth and in-situ monitoring for enhanced efficiency, and analysis of thermal stability will are reported.


2013 ◽  
Vol 591 ◽  
pp. 272-276
Author(s):  
Fang Zhang ◽  
Chao Song ◽  
Ling Li Ma ◽  
Xiao Li Xu ◽  
Zi Fei Peng

Sr2CeO4: Ho3+ was prepared by high-temperature solid-state method. The products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and photo luminescent (PL). The Sr2CeO4:Ho3+ phosphors showed a red emission under the near-ultraviolet excitation (280 nm) and the main emission centered at 475 nm. It has been found that A+ (A+ = Li+, Na+ or K+) codoped Sr2CeO4: Ho3+ phosphors could lead to a remarkable increase of photoluminescence. Luminous intensity was the highest when doping Li+ ions. Investigation indicated that Sr2Ce0.989O4: 0.001Ho3+, 0.01Li+ exhibited the strongest emission. The average particle size was about 6 um. The optimum sintering temperature was 1200 °C and the possible mechanism was also discussed.


Sign in / Sign up

Export Citation Format

Share Document