scholarly journals Effect of REs (Y, Nd) addition on high temperature oxidation kinetics, oxide layer characteristic and activation energy of AZ80 alloy

2020 ◽  
Vol 8 (4) ◽  
pp. 1281-1295
Author(s):  
Chunlong Cheng ◽  
Xiaoqiang Li ◽  
Qichi Le ◽  
Ruizhen Guo ◽  
Qing Lan ◽  
...  
Metals ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 17 ◽  
Author(s):  
Biying Li ◽  
Tairan Fu ◽  
Congling Shi

Micro-structured surface functional materials were widely used in electronics, batteries, solar cells, and many other products. However, oxidation at high temperatures greatly affects the material service life and performance. This study focuses on the oxide layer characteristics after high-temperature oxidation and the thermal emissivity of metal materials with micro-structured surfaces. Micro-structured surfaces with various groove morphologies were prepared on 99.9% purity nickel samples. The high-temperature oxidation characteristics of the nickel samples with the microstructure surfaces and the total hemispherical emissivities were measured after various oxidation times in high-temperature (1173 K) air to characterize the correlations between the micro-structure surface oxidization and the emissivity at elevated temperatures. The initial surface roughness greatly affects the surface roughness after oxidation with the oxidation increasing the surface roughness on smooth or less rough surfaces but making the surface smoother for very rough surfaces. The oxidation results show that rougher initial surfaces have larger oxide grain sizes with longer oxidation times leading to smaller grain sizes. The measured total hemispherical emissivity increased with the temperature (500–1400 K) and the oxide layer thickness. The experiments further illustrates that, for the same oxide layer thickness, the measured emissivities become larger for oxides with larger grain sizes caused by the rougher original surfaces. This analysis provides an understanding of the oxidation kinetics of microstructured surfaces and how the oxidized microstructure surfaces affect the thermal radiation properties.


Author(s):  
V. Optasanu ◽  
M. C. Marco de Lucas ◽  
A. Kanjer ◽  
B. Vincent ◽  
T. Montesin ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 526
Author(s):  
Zhengyuan Li ◽  
Lijia Chen ◽  
Haoyu Zhang ◽  
Siyu Liu

The oxidation behavior and microstructural evolution of the nanostructure of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys prepared by spark plasma sintering were investigated by high-temperature oxidation experiments in air at 1200 °C for 100 h. The formation of Al2O3 scale was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) line scans. The oxidation rate of Fe-Cr-Al ODS alloys is lower than that of conventional Fe-Cr-Al alloys, and the oxide layer formed on the Fe-Cr-Al alloy appeared loose and cracked, whereas the oxide layer formed on the Fe-Cr-Al ODS alloys was adherent and flat. This is due to the high density of dispersed nano-oxides hindering the diffusion of Al element and the formation of vacancies caused by them. In addition, the nano-oxides could also adhere to the oxide layer. Besides, the microstructure of the Fe-Cr-Al ODS alloy had excellent stability during high-temperature oxidation.


2017 ◽  
Vol 19 (11) ◽  
pp. 1700182 ◽  
Author(s):  
Harpreet Singh Grewal ◽  
Ramachandran Murali Sanjiv ◽  
Harpreet Singh Arora ◽  
Ram Kumar ◽  
Aditya Ayyagari ◽  
...  

2020 ◽  
Vol 321 ◽  
pp. 05018
Author(s):  
Eri Miura-Fujiwara ◽  
Yuya Ogawa ◽  
Mitsuo Niinomi ◽  
Tohru Yamasaki

The authors proposed an oxide coating on Ti alloys for the dental abutment tooth, and they had reported that Ti–29Nb–13Ta–4.6Zr (TNTZ) alloy forms a dense oxide layer by high-temperature oxidation. On the other hand, CP Ti forms a multilayered oxide consisted of rutile monolayers and the void layer. This morphological change by alloying is supposed to be mainly caused by Nb addition in Ti since the dense oxide layer of TNTZ mainly consists of rutile TiO2 and TiNb2O7. Therefore, in this study, oxidation behaviors of various range of Nb content of Ti-xNb alloys (x = 1 ~ 32 mol%) were investigated, and exfoliation resistance was evaluated. And in this paper, the oxide/metal interfacial microstructure of oxidized CP Ti, TNTZ alloy, and Ti-Nb alloy was studied by a transmission electron microscopy (TEM) and by a scanning transmission electron microscopy with an electron dispersive spectroscopy (STEM-EDS). The cross-sectional observations suggested that the substrate was gradually oxidized during heat treatment, and nucleation and grain growth of TiO2 and TiNb2O7 proceed at the metal/oxide interface. Consequently, the gradual oxidation process in TNTZ and Ti-Nb alloys could lead to its continuous interfacial microstructure and dense oxide structure, which can achieve high exfoliation resistance.


2018 ◽  
Vol 499 ◽  
pp. 595-612 ◽  
Author(s):  
Yong Yan ◽  
Benton E. Garrison ◽  
Mike Howell ◽  
Gary L. Bell

2013 ◽  
Vol 761 ◽  
pp. 125-129 ◽  
Author(s):  
Kazuya Hamaguchi ◽  
Tomoyuki Tsuchiyama ◽  
Junichi Matsushita

Tantalum (Ta) can be use a suture for operation and implant material in order not to react with body fluid and stimulate a human body. In this study, the stable oxide of a tantalum, tantalum oxide layer produced by oxidation of the tantalum nitride, TaN powders by high temperature oxidation were investigated in order to determine the possibility of its a distributed aid for biomaterial composite such as an artificial root etc. The sample, TaN powder oxidized at high temperature exhibited a steady mass gain with increasing oxidation temperature. Based on the results of the XRD, tantalum oxide, Ta2O5 was detected on the samples. It is considered, the TaN showed a good oxidation film produced by high temperature oxidation.


2011 ◽  
Vol 48 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Sang-Hwan Bak ◽  
Min-Jung Kim ◽  
Jae-Ho Lee ◽  
Sung-June Bong ◽  
Seul-Ki Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document