layer characteristic
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 5)

H-INDEX

6
(FIVE YEARS 0)

Author(s):  
Jarosław KONIECZNY

This article presents the results of a research on the operational damage to sectional insulator guides made of hard electrolytic copper Cu-ETP (Electrolytic Tough Pitch Copper). The guides were used on various rail routes, in real conditions, on which the trains ran at maximum speeds between 40 and 120 km/h for periods of 6 or 12 months. The microstructure of the surface, the working layer of the guide, which contacts the graphite plate of the current collector and the cross-section of the guide in the place where it was damaged was examined using the Olympus light microscope. The analysis of the chemical composition in the EDS micro-regions was performed using the Zeiss Supra 53 scanning electron microscope (SEM), while the qualitative X-ray phase analysis was performed with the use of the Panalytical X'Pert diffractometer. Scratches and deformations of the surface layer characteristic of the phenomenon of friction caused by the current collector were observed in the microstructure of the damaged parts of the guides of section insulators. The effect of a very intense oxidation process was also observed, as well as the effects of an electric arc, which according to the author, is the factor that has the most destructive effect on the condition of the guides.


2021 ◽  
Author(s):  
Gabriela Urgilés ◽  
Rolando Célleri ◽  
Katja Trachte ◽  
Jörg Bendix ◽  
Johanna Orellana-Alvear

<p>Information about the temporal rainfall variability at high-resolution is scarce, especially in regions with complex topography as the Tropical Andes, and this hinders the study rainfall dynamics. The identification of rainfall types is usually determined using thresholds of some rainfall characteristics as rain rate and velocity. Nevertheless, these thresholds are identified for a specific study area and thus they cannot be extrapolated to other places to identify rainfall classes. Thus, the aim of this study is to investigate rainfall-event classes based on a clustering approach by using the k-means algorithm. The clustering analysis is used to group objects (i.e., rainfall-events) based on its characteristics (e.g., duration, intensity, drop size distribution, melting layer identification). This study was carried out using data retrieved from a vertically pointing Micro Rain Radar (MRR) and a laser disdrometer. The instruments were located in the tropical Andes, at 2600 m a.s.l., in the city of Cuenca, Ecuador.  Three years of data were available for the study. Firstly, the rainfall events were selected by using the criteria: minimum inter-event, minimum total accumulation and minimum duration. Then, by using the k-means algorithm, two principal rainfall classes were identified in the study area. These rainfall classes (i.e., convective, stratiform) showed marked differences in their rainfall characteristics. Besides, a third rainfall class (mixed class) was identified as a subclass of the stratiform class. The stratiform class was more common during the year in the study area. Also, short duration rainfall events (less than 70 min) were dominant. Furthermore, the melting layer characteristic – that is used to determine rainfall classes – did not influence the rainfall class identification using the clustering analysis, especially in two classes; thus, its prior study is not necessary, and this makes the clustering analysis highly beneficial. Finally, this clustering analysis ensured an objective separation of rainfall classes in the tropical high Andes. This rainfall classification provided new insights about the rainfall dynamics in this tropical mountain area.</p>


2020 ◽  
Vol 81 (03) ◽  
pp. e42-e45
Author(s):  
Mihir Gupta ◽  
Pate J. Duddleston ◽  
Varun Sagi ◽  
Martin Powers ◽  
Hoi Sang U

AbstractEctopic cerebellar tissue has only been described in isolated case reports, with only two reported cases in adult patients. We report the case of a 63-year-old woman with progressive, medically refractory headaches. A scan showed an intraosseous lesion of the midline occipital bone. Surgical resection of the soft tissue lesion was undertaken. Her headaches ceased postoperatively. Histopathological analysis revealed cerebellar cortical tissue with a surrounding meningothelial cell layer, characteristic of cerebellar ectopia. This is the second reported case of an intraosseous location of this lesion, and only the third case described in an adult patient. Our findings illustrate a rare cause of headaches and support the therapeutic roles of surgical treatment for this extremely rare condition.


2018 ◽  
Vol 195 ◽  
pp. 04002
Author(s):  
Bagus Hario Setiadji

To date, non-destruction testing (NDT) method is the most popular method to assess the condition of road pavement. Among all evaluation procedures of the NDT method, load-deflection backcalculation analysis is one that is developed widely to understand the structural behavior of road pavement. On one side, the use of this analysis is greatly beneficial for presenting the layer characteristic accurately. However, the analysis requires specialist expertise. To overcome this, deflection bowl parameter application could become one alternative. The parameters are very easy to use; however, the intention of the parameters so far is only as an indication of the condition of the structural layer of the road pavement. Therefore, the parameters have to be used with careful consideration. In this study, the parameters were evaluated to determine the optimal usage of the parameters against different structures of road pavements. The results showed that a simplification of the number of parameters and a reformulation of the parameters were required by taking into account the ease of use in practice, the accuracy of subgrade modulus determination and the possibility to evaluate pavement structures with a layer number less than four.


2016 ◽  
Vol 61 (4) ◽  
pp. 2009-2012 ◽  
Author(s):  
P. Rokicki ◽  
K. Dychton

Abstract Carburizing is one of the most popular and wide used thermo-chemical treatment methods of surface modification of tool steels. It is a process based on carbon diffusive enrichment of the surface material and is applied for elements that are supposed to present higher hardness and wear resistance sustaining core ductility. Typical elements submitted to carburizing process are gears, shafts, pins and bearing elements. In the last years, more and more popular, especially in highly advanced treatment procedures used in the aerospace industry is vacuum carburizing. It is a process based on chemical treatment of the surface in lower pressure, providing much higher uniformity of carburized layer, lower process cost and much lesser negative impact on environment to compare with conventional carburizing methods, as for example gas carburizing in Endo atmosphere. Unfortunately, aerospace industry requires much more detailed description of the phenomena linked to this process method and the literature background shows lack of tests that could confirm fulfilment of all needed requirements and to understand the process itself in much deeper meaning. In the presented paper, authors focused their research on acetylene flow impact on carburized layer characteristic. This is one of the most crucial parameters concerning homogeneity and uniformity of carburized layer properties. That is why, specific process methodology have been planned based on different acetylene flow values, and the surface layer of the steel gears have been investigated in meaning to impact on any possible change in potential properties of the final product.


2015 ◽  
Vol 58 (4) ◽  
Author(s):  
Blas F. de Haro Barbas ◽  
Ana G. Elias

<p>The effect of including solar cycle 19 (1954-1964) in ionospheric trend estimation is assessed using experimental foF2 values. The dominant influence on the F2 layer is solar EUV radiation. In fact, around 90% of inter-annual variance of ionospheric parameters, such as foF2, is explained by solar EUV proxies such as the sunspot number, Rz, and solar radio flux at 10.7 cm, F10.7. This makes necessary to filter out solar activity effects prior to long term trends estimation, which is reduced at most to the remaining 10% variance. In general solar activity is filtered assessing the residuals of a linear regression between foF2 and Rz, or between foF2 and F10.7. Solar cycle 19 is a strong cycle during which Rz and F10.7 exceeded the values beyond which the ionosphere does not respond linearly to a further increase in EUV radiation. This effect, called saturation, implies a break down of the linearity between foF2 and EUV, and results in persistent negative residuals during this period. Since solar cycle 19 is at the beginning of the time series, trends result to be positive, or less negative, than trends without considering this period. In this case the filtering process is generating a “spurious” trend in the filtered data series which may lead to erroneous conclusions. hmF2 that do not present a saturation effect is also analyzed.</p><div> </div>


Sign in / Sign up

Export Citation Format

Share Document