scholarly journals Effect of Nb addition on high-temperature oxidation behavior, oxide layer structure, and its exfoliation resistance of Ti-Nb Alloys

2020 ◽  
Vol 321 ◽  
pp. 05018
Author(s):  
Eri Miura-Fujiwara ◽  
Yuya Ogawa ◽  
Mitsuo Niinomi ◽  
Tohru Yamasaki

The authors proposed an oxide coating on Ti alloys for the dental abutment tooth, and they had reported that Ti–29Nb–13Ta–4.6Zr (TNTZ) alloy forms a dense oxide layer by high-temperature oxidation. On the other hand, CP Ti forms a multilayered oxide consisted of rutile monolayers and the void layer. This morphological change by alloying is supposed to be mainly caused by Nb addition in Ti since the dense oxide layer of TNTZ mainly consists of rutile TiO2 and TiNb2O7. Therefore, in this study, oxidation behaviors of various range of Nb content of Ti-xNb alloys (x = 1 ~ 32 mol%) were investigated, and exfoliation resistance was evaluated. And in this paper, the oxide/metal interfacial microstructure of oxidized CP Ti, TNTZ alloy, and Ti-Nb alloy was studied by a transmission electron microscopy (TEM) and by a scanning transmission electron microscopy with an electron dispersive spectroscopy (STEM-EDS). The cross-sectional observations suggested that the substrate was gradually oxidized during heat treatment, and nucleation and grain growth of TiO2 and TiNb2O7 proceed at the metal/oxide interface. Consequently, the gradual oxidation process in TNTZ and Ti-Nb alloys could lead to its continuous interfacial microstructure and dense oxide structure, which can achieve high exfoliation resistance.

2013 ◽  
Vol 740-742 ◽  
pp. 485-489 ◽  
Author(s):  
Wei Huang ◽  
Shao Hui Chang ◽  
Xue Chao Liu ◽  
Zheng Zheng Li ◽  
Tian Yu Zhou ◽  
...  

The near-SiC-interfaces of annealed Ni/SiC contacts were observed directly by high-resolution transmission electron microscopy (HRTEM). 1 nm native oxide layer was observed in the as-deposited contact interface. The native oxide layer cannot be removed at 650°C through rapid thermal annealing (RTA) and it was completely removed at 1000°C RTA. The residue of native oxide layer resulted in the Schottky characters. High temperature annealing (>950°C) not only removes the oxide layer in the near-SiC-interface, but also forms a well arranged flat Ni2Si/SiC interface, which contribute to the formation of ohmic behavior.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 526
Author(s):  
Zhengyuan Li ◽  
Lijia Chen ◽  
Haoyu Zhang ◽  
Siyu Liu

The oxidation behavior and microstructural evolution of the nanostructure of Fe-Cr-Al oxide dispersion strengthened (ODS) alloys prepared by spark plasma sintering were investigated by high-temperature oxidation experiments in air at 1200 °C for 100 h. The formation of Al2O3 scale was observed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) line scans. The oxidation rate of Fe-Cr-Al ODS alloys is lower than that of conventional Fe-Cr-Al alloys, and the oxide layer formed on the Fe-Cr-Al alloy appeared loose and cracked, whereas the oxide layer formed on the Fe-Cr-Al ODS alloys was adherent and flat. This is due to the high density of dispersed nano-oxides hindering the diffusion of Al element and the formation of vacancies caused by them. In addition, the nano-oxides could also adhere to the oxide layer. Besides, the microstructure of the Fe-Cr-Al ODS alloy had excellent stability during high-temperature oxidation.


2013 ◽  
Vol 591 ◽  
pp. 245-248 ◽  
Author(s):  
Jin Feng Xia ◽  
Hong Qiang Nian ◽  
Tao Feng ◽  
Hai Fang Xu ◽  
Dan Yu Jiang

In some applications such as automotive oxygen sensor, 5mol% Y2O3stabilized zirconia (5YSZ) is generally used because it has both excellent ionic conductivity and mechanical properties. The automotive oxygen sensor would experience a cyclic change from high temperature (engine running) environment to the low temperature damp environment (in the tail pipe when vehicle stops). The conductivity change with coupled conditions of thermal cycle and dump environment in the 5mol%Y2O3ZrO2(5YSZ) system was examined by XRD,Impedance spectroscopy and transmission electron microscopy (SEM) in this paper.


1998 ◽  
Vol 4 (3) ◽  
pp. 269-277 ◽  
Author(s):  
A. Agrawal ◽  
J. Cizeron ◽  
V.L. Colvin

In this work, the high-temperature behavior of nanocrystalline TiO2 is studied using in situ transmission electron microscopy (TEM). These nanoparticles are made using wet chemical techniques that generate the anatase phase of TiO2 with average grain sizes of 6 nm. X-ray diffraction studies of nanophase TiO2 indicate the material undergoes a solid-solid phase transformation to the stable rutile phase between 600° and 900°C. This phase transition is not observed in the TEM samples, which remain anatase up to temperatures as high as 1000°C. Above 1000°C, nanoparticles become mobile on the amorphous carbon grid and by 1300°C, all anatase diffraction is lost and larger (50 nm) single crystals of a new phase are present. This new phase is identified as TiC both from high-resolution electron microscopy after heat treatment and electron diffraction collected during in situ heating experiments. Video images of the particle motion in situ show the nanoparticles diffusing and interacting with the underlying grid material as the reaction from TiO2 to TiC proceeds.


1990 ◽  
Vol 183 ◽  
Author(s):  
J. L. Batstone

AbstractMotion of ordered twin/matrix interfaces in films of silicon on sapphire occurs during high temperature annealing. This process is shown to be thermally activated and is analogous to grain boundary motion. Motion of amorphous/crystalline interfaces occurs during recrystallization of CoSi2 and NiSi2 from the amorphous phase. In-situ transmission electron microscopy has revealed details of the growth kinetics and interfacial roughness.


Sign in / Sign up

Export Citation Format

Share Document