scholarly journals On the rule of mixtures for bimetal composites without bonding

2020 ◽  
Vol 8 (4) ◽  
pp. 1253-1261
Author(s):  
Bo Feng ◽  
Xiaowei Feng ◽  
Changjian Yan ◽  
Yunchang Xin ◽  
Haiyan Wang ◽  
...  
Keyword(s):  
2018 ◽  
Vol 10 (7) ◽  
pp. 168781401878528 ◽  
Author(s):  
Zirong Luo ◽  
Xin Li ◽  
Jianzhong Shang ◽  
Hong Zhu ◽  
Delei Fang

A modified rule of mixtures is required to account for the experimentally observed nonlinear variation of tensile strength. A modified Halpin–Tsai model was presented to predict the Young’s modulus of multiscale reinforced composites with both micron-sized and nano-sized reinforcements. In the composites, both micron-sized fillers—carbon fibers—and nano-sized fillers—rubber nanoparticles and carbon nanotubes—are added into the epoxy resin matrix. Carbon fibers can help epoxy resins increase both the tensile strength and Young’s modulus, while rubber nanoparticles and carbon nanotubes can improve the toughness without sacrificing other properties. Mechanical experiments and scanning electron microscopy observations were used to study the effects of the micron-sized and nano-sized reinforcements and their combination on tensile and toughness properties of the composites. The results showed that the combined use of multiscale reinforcements had synergetic effects on both the strength and the toughness of the composites.


1997 ◽  
Vol 119 (4) ◽  
pp. 694-699 ◽  
Author(s):  
Sung Won Han ◽  
Thierry A. Blanchet

A model for the steady-state wear behavior of polymer composite materials, including the effects of preferential load support by and surface accumulation of wear-resistant filler particles, is further developed. It is shown that the resultant inverse rule-of-mixtures description of steady-state composite wear rate behavior is independent of the assumed form of filler contact pressure, though preferential load support does affect the degree of surface accumulation of filler particles that occurs. The validity of these descriptions of steady-state wear behavior and surface accumulation as functions of bulk filler volume fraction are investigated by experiments with copper particle-filled PTFE composites for bulk filler volume fractions from 0 to 40 percent. The applicability of the description of surface accumulation for this composite system was limited to bulk filler volume fractions less than 20 percent, a hypothesized result of transition in load-sharing between filler and matrix. The inverse rule-of-mixtures description of steady-state wear rate, however, was maintained over the full range of volume fractions investigated.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Olivia F. Dippo ◽  
Neda Mesgarzadeh ◽  
Tyler J. Harrington ◽  
Grant D. Schrader ◽  
Kenneth S. Vecchio

AbstractHigh-entropy ceramics have potential to improve the mechanical properties and high-temperature stability over traditional ceramics, and high entropy nitrides and carbonitrides (HENs and HECNs) are particularly attractive for high temperature and high hardness applications. The synthesis of 5 bulk HENs and 4 bulk HECNs forming single-phase materials is reported herein among 11 samples prepared. The hardness of HENs and HECNs increased by an average of 22% and 39%, respectively, over the rule-of-mixtures average of their monocarbide and mononitride precursors. Similarly, elastic modulus values increased by an average of 17% in nitrides and 31% in carbonitrides over their rule-of-mixtures values. The enhancement in mechanical properties is tied to an increase in the configurational entropy and a decrease in the valence electron concentration, providing parameters for tuning mechanical properties of high-entropy ceramics.


2004 ◽  
Vol 856 ◽  
Author(s):  
Peyton L. Hopson ◽  
Robert B. Moore

ABSTRACTThe effect of blending polycarbonate (PC) with an amorphous copolyester (PCTG) and a crystallizable polyester (PBT) on the environmental stress cracking (ESC) resistance was studied. The determination of the ESC resistance for the blend was accomplished through tensile testing in a fluid environment utilizing an Eyring-type activated process to describe ESC. It was found that the miscible blend, PC/PCTG, displayed a rule of mixtures for ESC resistance to all fluids tested except ether resistance. The immiscible blend, PC/PBT, displayed a significant negative deviation from the rule of mixtures for ESC resistance, except for ether resistance, which has been attributed to the development of stress sites for craze initiation at the interface between the blend components on the surface of the test sample. The differences in ether resistance compared to the trends found for the fluid ESC resistance in this study were attributed to possible changes in crystallization for the samples tested in ether. The data suggests that strongly swelling fluids, e.g. diethyl ether in the presence of PC, may cause densification from polymer crystallization resulting in voids that facilitate in the initiation and growth of crazes.


2019 ◽  
Vol 159 ◽  
pp. 114-131 ◽  
Author(s):  
Enrique García-Macías ◽  
Carlos Felipe Guzmán ◽  
Erick I. Saavedra Flores ◽  
Rafael Castro-Triguero

2020 ◽  
Vol 127 ◽  
pp. 106926
Author(s):  
Sufyan M. Shaikh ◽  
V.S. Hariharan ◽  
Satyesh K. Yadav ◽  
B.S. Murty

Sign in / Sign up

Export Citation Format

Share Document