scholarly journals Numerical studies on high-velocity impact welding: smoothed particle hydrodynamics (SPH) and arbitrary Lagrangian–Eulerian (ALE)

2016 ◽  
Vol 24 ◽  
pp. 376-381 ◽  
Author(s):  
Ali Nassiri ◽  
Brad Kinsey
Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1323 ◽  
Author(s):  
Yulia Yu. Émurlaeva ◽  
Ivan A. Bataev ◽  
Qiang Zhou ◽  
Daria V. Lazurenko ◽  
Ivan V. Ivanov ◽  
...  

A welding window is one of the key concepts used to select optimal regimes for high-velocity impact welding. In a number of recent studies, the method of smoothed particle hydrodynamics (SPH) was used to find the welding window. In this paper, an attempt is made to compare the results of SPH simulation and classical approaches to find the boundaries of a welding window. The experimental data on the welding of 6061-T6 alloy obtained by Wittman were used to verify the simulation results. Numerical simulation of high-velocity impact accompanied by deformation and heating was carried out by the SPH method in Ansys Autodyn software. To analyze the cooling process, the heat equation was solved using the finite difference method. Numerical simulation reproduced most of the explosion welding phenomena, in particular, the formation of waves, vortices, and jets. The left, right, and lower boundaries found using numerical simulations were in good agreement with those found using Wittman’s and Deribas’s approaches. At the same time, significant differences were found in the position of the upper limit. The results of this study improve understanding of the mechanism of joint formation during high-velocity impact welding.


2020 ◽  
Vol 10 (24) ◽  
pp. 8983
Author(s):  
A. Ersin Dinçer ◽  
Abdullah Demir

In this study, a numerical model is proposed for the analysis of a simply supported structural cable. Smoothed particle hydrodynamics (SPH)—a mesh-free, Lagrangian method with advantages for analysis of highly deformable bodies—is utilized to model a cable. In the proposed numerical model, it is assumed that a cable has only longitudinal stiffness in tension. Accordingly, SPH equations derived for solid mechanics are adapted for a structural cable, for the first time. Besides, a proper damping parameter is introduced to capture the behavior of the cable more realistically. In order to validate the proposed numerical model, different experimental and numerical studies available in the literature are used. In addition, novel experiments are carried out. In the experiments, different harmonic motions are applied to a uniformly loaded cable. Results show that the SPH method is an appropriate method to simulate the structural cable.


2020 ◽  
Vol 15 ◽  
pp. 155892502091561
Author(s):  
Linbo Yan ◽  
Zhengkai Sun ◽  
Han Cheng

In order to study the influence of rainstorm on parachute dropping, the smoothed particle hydrodynamics/arbitrary Lagrangian–Eulerian coupling method is proposed. Finite elements are used to describe the continuous material such as fabric and air flow field, and the smoothed particle hydrodynamics particles are used to describe the discrete raindrops. The coupling between different fluid and structure is realized by penalty function. In order to distinguish the most influential factor of rainstorm environment on parachute, the effects of raindrop field and wind field in rainstorm are studied, respectively. It could be found that the raindrop fields with different droplet sizes have little effect on the parachute’s shape, opening shock, and performance according to the comparative analysis, while the vertical wind field has a great influence on parachute’s deceleration performance. The wind field, not the raindrop field, is the most important factor affecting the parachute’s deceleration performance. The method and conclusions in this article could provide some references for parachute design.


Meccanica ◽  
2013 ◽  
Vol 48 (7) ◽  
pp. 1623-1636 ◽  
Author(s):  
Vahab Haghighat Namini ◽  
Nima Amanifard ◽  
Aboulfazl Darvizeh ◽  
Katayoon Mohamadi

Sign in / Sign up

Export Citation Format

Share Document