Methodology for prediction of sub-surface residual stress in micro end milling of Ti-6Al-4V alloy

2021 ◽  
Vol 62 ◽  
pp. 600-612
Author(s):  
Rahul Y ◽  
Vipindas K ◽  
Jose Mathew
Measurement ◽  
2021 ◽  
pp. 109333
Author(s):  
Minghui Cheng ◽  
Li Jiao ◽  
Pei Yan ◽  
Lvchen Feng ◽  
Tianyang Qiu ◽  
...  

2016 ◽  
Vol 235 ◽  
pp. 41-48 ◽  
Author(s):  
Yuan Ma ◽  
Pingfa Feng ◽  
Jianfu Zhang ◽  
Zhijun Wu ◽  
Dingwen Yu

2013 ◽  
Vol 589-590 ◽  
pp. 28-32 ◽  
Author(s):  
Sha Liu ◽  
Ping Fa Feng ◽  
Ding Wen Yu

This paper proposes a method to simulate residual stress induced by end milling process via 3-D FEM. First, Johnson-Cook material model parameters for a Japanese type of alloy steel (SCM440H) were extracted by a combination method. With the material model parameters, symmetrical end milling process for plate of SCM440H was simulated by FE software to get the residual stress distribution in the machined workpiece. Residual stress measurement experiment was carried out after end milling process to be compared with simulation result to verify the method, which proved that high simulation accuracy can be obtained by extracted material model parameters.


2012 ◽  
Vol 426 ◽  
pp. 7-10 ◽  
Author(s):  
Yu Mei Liu ◽  
Z. L. Jiang ◽  
Z. Li

The residual stress is one important factor causing deformation and distortion. A mathematical model is presented. It predicts the surface residual-stress caused by end-milling. Response Surface Methodology (RSM) with the Takushi method is used to design experiment. The variance analysis (ANOVA) is conducted to determine the adequacy of the model. It is shown that the model offering good correlation between the experimental and predicted results, is useful in selecting suitable cutting parameters for milling aluminium alloy 6061.


Author(s):  
J. Fang ◽  
H. M. Chan ◽  
M. P. Harmer

It was Niihara et al. who first discovered that the fracture strength of Al2O3 can be increased by incorporating as little as 5 vol.% of nano-size SiC particles (>1000 MPa), and that the strength would be improved further by a simple annealing procedure (>1500 MPa). This discovery has stimulated intense interest on Al2O3/SiC nanocomposites. Recent indentation studies by Fang et al. have shown that residual stress relief was more difficult in the nanocomposite than in pure Al2O3. In the present work, TEM was employed to investigate the microscopic mechanism(s) for the difference in the residual stress recovery in these two materials.Bulk samples of hot-pressed single phase Al2O3, and Al2O3 containing 5 vol.% 0.15 μm SiC particles were simultaneously polished with 15 μm diamond compound. Each sample was cut into two pieces, one of which was subsequently annealed at 1300° for 2 hours in flowing argon. Disks of 3 mm in diameter were cut from bulk samples.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-Young Jeong ◽  
Je-Ryung Lee ◽  
Hyeonjin Park ◽  
Joonkyo Jung ◽  
Doo-Sun Choi ◽  
...  

AbstractMicrowave absorbers using conductive ink are generally fabricated by printing an array pattern on a substrate to generate electromagnetic fields. However, screen printing processes are difficult to vary the sheet resistance values for different regions of the pattern on the same layer, because the printing process deposits materials at the same height over the entire surface of substrate. In this study, a promising manufacturing process was suggested for engraved resistive double square loop arrays with ultra-wide bandwidth microwave. The developed manufacturing process consists of a micro-end-milling, inking, and planing processes. A 144-number of double square loop array was precisely machined on a polymethyl methacrylate workpiece with the micro-end-milling process. After engraving array structures, the machined surface was completely covered with the developed conductive carbon ink with a sheet resistance of 15 Ω/sq. It was cured at room temperature. Excluding the ink that filled the machined double square loop array, overflowed ink was removed with the planing process to achieve full filled and isolated resistive array patterns. The fabricated microwave absorber showed a small radar cross-section with reflectance less than − 10 dB in the frequency band range of 8.0–14.6 GHz.


Sign in / Sign up

Export Citation Format

Share Document