Prediction of surface residual stress in end milling with Gaussian process regression

Measurement ◽  
2021 ◽  
pp. 109333
Author(s):  
Minghui Cheng ◽  
Li Jiao ◽  
Pei Yan ◽  
Lvchen Feng ◽  
Tianyang Qiu ◽  
...  
2016 ◽  
Vol 235 ◽  
pp. 41-48 ◽  
Author(s):  
Yuan Ma ◽  
Pingfa Feng ◽  
Jianfu Zhang ◽  
Zhijun Wu ◽  
Dingwen Yu

2013 ◽  
Vol 589-590 ◽  
pp. 28-32 ◽  
Author(s):  
Sha Liu ◽  
Ping Fa Feng ◽  
Ding Wen Yu

This paper proposes a method to simulate residual stress induced by end milling process via 3-D FEM. First, Johnson-Cook material model parameters for a Japanese type of alloy steel (SCM440H) were extracted by a combination method. With the material model parameters, symmetrical end milling process for plate of SCM440H was simulated by FE software to get the residual stress distribution in the machined workpiece. Residual stress measurement experiment was carried out after end milling process to be compared with simulation result to verify the method, which proved that high simulation accuracy can be obtained by extracted material model parameters.


2012 ◽  
Vol 426 ◽  
pp. 7-10 ◽  
Author(s):  
Yu Mei Liu ◽  
Z. L. Jiang ◽  
Z. Li

The residual stress is one important factor causing deformation and distortion. A mathematical model is presented. It predicts the surface residual-stress caused by end-milling. Response Surface Methodology (RSM) with the Takushi method is used to design experiment. The variance analysis (ANOVA) is conducted to determine the adequacy of the model. It is shown that the model offering good correlation between the experimental and predicted results, is useful in selecting suitable cutting parameters for milling aluminium alloy 6061.


Author(s):  
J. Fang ◽  
H. M. Chan ◽  
M. P. Harmer

It was Niihara et al. who first discovered that the fracture strength of Al2O3 can be increased by incorporating as little as 5 vol.% of nano-size SiC particles (>1000 MPa), and that the strength would be improved further by a simple annealing procedure (>1500 MPa). This discovery has stimulated intense interest on Al2O3/SiC nanocomposites. Recent indentation studies by Fang et al. have shown that residual stress relief was more difficult in the nanocomposite than in pure Al2O3. In the present work, TEM was employed to investigate the microscopic mechanism(s) for the difference in the residual stress recovery in these two materials.Bulk samples of hot-pressed single phase Al2O3, and Al2O3 containing 5 vol.% 0.15 μm SiC particles were simultaneously polished with 15 μm diamond compound. Each sample was cut into two pieces, one of which was subsequently annealed at 1300° for 2 hours in flowing argon. Disks of 3 mm in diameter were cut from bulk samples.


2020 ◽  
Author(s):  
Marc Philipp Bahlke ◽  
Natnael Mogos ◽  
Jonny Proppe ◽  
Carmen Herrmann

Heisenberg exchange spin coupling between metal centers is essential for describing and understanding the electronic structure of many molecular catalysts, metalloenzymes, and molecular magnets for potential application in information technology. We explore the machine-learnability of exchange spin coupling, which has not been studied yet. We employ Gaussian process regression since it can potentially deal with small training sets (as likely associated with the rather complex molecular structures required for exploring spin coupling) and since it provides uncertainty estimates (“error bars”) along with predicted values. We compare a range of descriptors and kernels for 257 small dicopper complexes and find that a simple descriptor based on chemical intuition, consisting only of copper-bridge angles and copper-copper distances, clearly outperforms several more sophisticated descriptors when it comes to extrapolating towards larger experimentally relevant complexes. Exchange spin coupling is similarly easy to learn as the polarizability, while learning dipole moments is much harder. The strength of the sophisticated descriptors lies in their ability to linearize structure-property relationships, to the point that a simple linear ridge regression performs just as well as the kernel-based machine-learning model for our small dicopper data set. The superior extrapolation performance of the simple descriptor is unique to exchange spin coupling, reinforcing the crucial role of choosing a suitable descriptor, and highlighting the interesting question of the role of chemical intuition vs. systematic or automated selection of features for machine learning in chemistry and material science.


2018 ◽  
Author(s):  
Caitlin C. Bannan ◽  
David Mobley ◽  
A. Geoff Skillman

<div>A variety of fields would benefit from accurate pK<sub>a</sub> predictions, especially drug design due to the affect a change in ionization state can have on a molecules physiochemical properties.</div><div>Participants in the recent SAMPL6 blind challenge were asked to submit predictions for microscopic and macroscopic pK<sub>a</sub>s of 24 drug like small molecules.</div><div>We recently built a general model for predicting pK<sub>a</sub>s using a Gaussian process regression trained using physical and chemical features of each ionizable group.</div><div>Our pipeline takes a molecular graph and uses the OpenEye Toolkits to calculate features describing the removal of a proton.</div><div>These features are fed into a Scikit-learn Gaussian process to predict microscopic pK<sub>a</sub>s which are then used to analytically determine macroscopic pK<sub>a</sub>s.</div><div>Our Gaussian process is trained on a set of 2,700 macroscopic pK<sub>a</sub>s from monoprotic and select diprotic molecules.</div><div>Here, we share our results for microscopic and macroscopic predictions in the SAMPL6 challenge.</div><div>Overall, we ranked in the middle of the pack compared to other participants, but our fairly good agreement with experiment is still promising considering the challenge molecules are chemically diverse and often polyprotic while our training set is predominately monoprotic.</div><div>Of particular importance to us when building this model was to include an uncertainty estimate based on the chemistry of the molecule that would reflect the likely accuracy of our prediction. </div><div>Our model reports large uncertainties for the molecules that appear to have chemistry outside our domain of applicability, along with good agreement in quantile-quantile plots, indicating it can predict its own accuracy.</div><div>The challenge highlighted a variety of means to improve our model, including adding more polyprotic molecules to our training set and more carefully considering what functional groups we do or do not identify as ionizable. </div>


Sign in / Sign up

Export Citation Format

Share Document