scholarly journals Mesoscale variability in intact and ghost colonies of Phaeocystis antarctica in the Ross Sea: Distribution and abundance

2017 ◽  
Vol 166 ◽  
pp. 97-107 ◽  
Author(s):  
Walker O. Smith ◽  
Dennis J. McGillicuddy ◽  
Elise B. Olson ◽  
Valery Kosnyrev ◽  
Emily E. Peacock ◽  
...  
Nature ◽  
2000 ◽  
Vol 404 (6778) ◽  
pp. 595-598 ◽  
Author(s):  
G. R. DiTullio ◽  
J. M. Grebmeier ◽  
K. R. Arrigo ◽  
M. P. Lizotte ◽  
D. H. Robinson ◽  
...  

2020 ◽  
Vol 10 (19) ◽  
pp. 6965 ◽  
Author(s):  
Francesco Bolinesi ◽  
Maria Saggiomo ◽  
Serena Aceto ◽  
Angelina Cordone ◽  
Emanuela Serino ◽  
...  

We collected live mixed natural samples from the northeastern Ross Sea during the austral summer of 2017 and isolated a novel Prorocentrum sp. (Dinophyceae) associated with mucilaginous Phaeocystis antarctica (Coccolithophyceae) colonies. The haptophyte P. antarctica is a key species of the phytoplankton community in the Ross Sea, where blooms are subjected to iron limitation and/or co-limitation with other micronutrients (e.g., vitamin B12) during the summer. We first performed preliminary genetic analyses to determine the specific identity of the novel Prorocentrum sp., which indicated that it represented a previously undescribed species. The formal description of this new species is in process. To further assess its relationship with P. antarctica, we obtained their monospecific and mixed cultures and evaluated their responses to different irradiance levels and iron and vitamin B12 limitation. Our results indicated differential susceptibility of the two species to iron limitation and differential photosynthetic plasticity under high irradiance. Iron limitation reduced colony formation in P. antarctica and decreased the chlorophyll-a content in Prorocentrum sp., whereas B12 limitation did not affect growth or photosynthetic efficiency in either species. In addition, P. antarctica could photosynthesize efficiently under different irradiance levels, due to its ability to modulate the light adsorption cross-section of PSII, whereas Prorocentrum sp. exhibited lower photosynthetic plasticity and an inability to modulate both the maximum photochemical efficiency and effective adsorption cross-section of PSII under high irradiance. The trophic interaction between Prorocentrum sp. and P. antarctica could present ecological implications for the food webs and biogeochemical cycles of the Antarctic ecosystem. Considering the predicted climate-driven shifts in global ocean surface light regimes and changes in iron or vitamin B12 transfer, which are most likely to impact changes in the phytoplankton community structure, our results present implications for carbon export to deeper waters, ecological functioning, and associated biogeochemical changes in the future.


2019 ◽  
Vol 151 ◽  
pp. 104733 ◽  
Author(s):  
Olga Mangoni ◽  
Maria Saggiomo ◽  
Francesco Bolinesi ◽  
Michela Castellano ◽  
Paolo Povero ◽  
...  

1998 ◽  
Vol 168 ◽  
pp. 229-244 ◽  
Author(s):  
WO Smith ◽  
CA Carlson ◽  
HW Ducklow ◽  
DA Hansell

2018 ◽  
Author(s):  
Sara J. Bender ◽  
Dawn M. Moran ◽  
Matthew R. McIlvin ◽  
Hong Zheng ◽  
John P. McCrow ◽  
...  

Abstract. Phaeocystis antarctica is an important phytoplankter of the Ross Sea where it dominates the early season bloom after sea ice retreat and is a major contributor to carbon export. The factors that influence Phaeocystis colony formation and the resultant Ross Sea bloom initiation have been of great scientific interest, yet there is little known about the underlying mechanisms responsible for these phenomena. Here, we present laboratory and field studies on Phaeocystis antarctica grown under multiple iron conditions using a coupled proteomic and transcriptomic approach. P. antarctica had a lower iron limitation threshold than a Ross Sea diatom Chaetoceros sp., and at increased iron nutrition (> 120 pM Fe') a shift from flagellate cells to a majority of colonial cells in P. antarctica was observed, implying a role for iron as a trigger for colony formation. Proteome analysis revealed an extensive and coordinated shift in proteome structure linked to iron availability and life cycle transitions with 327 and 436 proteins significantly different between low and high iron in strains 1871 and 1374, respectively. The enzymes flavodoxin and plastocyanin that can functionally replace iron metalloenzymes were observed at low iron treatments consistent with cellular iron sparing strategies, with plastocyanin being more dynamic in range. The numerous isoforms of the putative iron-starvation induced protein ISIP group (ISIP2A and ISIP3) had abundance patterns coincided with that of either low or high iron (and coincident flagellate or the colonial cell types in strain 1871), implying that there may be specific iron acquisition systems for each life cycle type. The proteome analysis also revealed numerous structural proteins associated with each cell type: within flagellate cells actin and tubulin from flagella and haptonema structures as well as a suite of calcium-binding proteins with EF domains were observed. In the colony-dominated samples a variety of structural proteins were observed that are also often found in multicellular organisms including spondins, lectins, fibrillins, and glycoproteins with von Willebrand domains. A large number of proteins of unknown function were identified that became abundant at either high and low iron availability. These results were compared to the first metaproteomic analysis of a Ross Sea Phaeocystis bloom to connect the mechanistic information to the in situ ecology and biogeochemistry. Proteins associated with both flagellate and colonial cells were observed in the bloom sample consistent with the need for both cell types within a growing bloom. Bacterial iron storage and B12 biosynthesis proteins were also observed consistent with chemical synergies within the colony microbiome to cope with the biogeochemical conditions. Together these responses reveal a complex, highly coordinated effort by P. antarctica to regulate its phenotype at the molecular level in response to iron and provide a window into the biology, ecology, and biogeochemistry of this group.


Elem Sci Anth ◽  
2019 ◽  
Vol 7 ◽  
Author(s):  
Vernon L. Asper ◽  
Walker O. Smith

The vertical distribution and temporal changes in aggregate abundance and sizes were measured in the Ross Sea, Antarctica between 2002 and 2005 to acquire a more complete understanding of the mechanisms and rates of carbon export from the euphotic layer. Aggregate abundance was determined by photographic techniques, and water column parameters (temperature, salinity, fluorescence, transmissometry) were assessed from CTD profiles. During the first three years the numbers of aggregates increased seasonally, being much more abundant within the upper 200 m in late summer than in early summer from 50 to 100 m (12.5 L–1 in early summer vs. 42.9 L–1 in late summer). In Year 4 aggregate numbers were substantially greater than in other years, and average aggregate abundance was maximal in early rather than late summer (177 vs. 84.5 L–1), which we attributed to the maximum biomass and aggregate formation being reached earlier than in other years. The contribution of aggregate particulate organic carbon to the total particulate carbon pool was estimated to be 20%. Ghost colonies, collapsed colonies of the haptophyte Phaeocystis antarctica, were observed during late summer in Year 4, with maximum numbers in the upper 100 m of ca. 40 L–1. Aggregate abundance, particulate organic carbon and ghost colonies all decreased exponentially with depth, and the rate of ghost colony disappearance suggested that their contribution to sedimentary input was small at the time of sampling. Bottom nepheloid layers were commonly observed in late summer in both transmissometer and aggregate data. Late summer nepheloid layers had fluorescent material within them, suggesting that the particles were likely generated during the same growing season. Longer studies encompassing the entire production season would be useful in further elucidating the role of these aggregates in the carbon cycle of these regions.


2021 ◽  
Author(s):  
Walker O. Smith Jr.

Abstract. Polar systems are undersampled due to the difficulty of sampling remote and challenging environments; however, these systems are critical components of global biogeochemical cycles. Measurements on primary productivity in specific areas can quantify the input of organic matter to food webs, and so are of critical ecological importance as well. However, long-term measurements using the same methodology are available only for a few polar systems. Primary productivity measurements using 14C-uptake incubations from the Ross Sea, Antarctica, are synthesized, along with chlorophyll concentrations at the same depths and locations. A total of 19 independent cruises were completed, and 449 stations occupied where measurements of primary productivity (each with 7 depths) were completed. The incubations used the same basic simulated in situ methodology for all. Integrated water column productivity for all stations averaged 1.10 ± 1.20 g C m−2 d−1, and the maximum was 13.1 g C m−2 d−1. Annual productivity calculated from the means throughout the growing season equalled 146 g C m−2 yr−1. Mean chlorophyll concentration in the euphotic zone (the 1 % irradiance level) was 2.85 ± 2.68 mg m−3 (maximum concentration was 19.1 mg m−3). Maximum photosynthetic rates at the surface (normalized to chlorophyll) averaged 0.94 ± 0.71 mg C (mg chl)−1 h−1, similar to the maximum rate found in photosynthesis/irradiance measurements. Productivity measurements are consistent with the temporal patterns of biomass found previously, with biomass and productivity peaking in late December; mixed layers were at a minimum at this time as well. Estimates of plankton composition also suggest that pre-January productivity was largely driven by the haptophyte Phaeocystis antarctica, and summer productivity by diatoms. The data set will be useful for a comparison to other Antarctic regions and provide a basis for refined bio-optical models of regional primary productivity.


Sign in / Sign up

Export Citation Format

Share Document