Failure analysis of anisotropic sheet-metals using a non-local plastic damage model

2005 ◽  
Vol 170 (1-2) ◽  
pp. 457-470 ◽  
Author(s):  
M. Brunet ◽  
F. Morestin ◽  
H. Walter-Leberre
2021 ◽  
pp. 105678952199872
Author(s):  
Bilal Ahmed ◽  
George Z Voyiadjis ◽  
Taehyo Park

In this work, a new damage model for concrete is proposed with an extension of the stress decomposition (limited to biaxial cases), to capture shear damage due to the opposite signed principal stresses. To extract the pure shear stress, the assumption is made that one component of the shear stress is a minimum absolute of the two principal stresses. The opposite signed principal stresses are decomposed into shear stress and uniaxial tensile/compressive stress. A local model is implemented in Abaqus UMAT and it is further extended to a non-local model by utilization of the gradient theory. The concept of three length scales (tension, compression, and shear) is kept the same as the recently proposed nonlocal damage model by the authors. The nonlocal model is implemented in the Abaqus UEL-UMAT subroutine with an eight-node quadrilateral user-defined element, having five degrees of freedom at corner nodes (displacement in X/Y direction and tensile/compressive and shear nonlocal equivalent strain) and two degrees of freedom at internal nodes. Some examples of a local model including uniaxial and biaxial loading are addressed. Also, five examples of mixed crack mode and mode-I cracking are presented to comprehensively show the performance of this model.


Bauingenieur ◽  
2015 ◽  
Vol 90 (06) ◽  
pp. 252-264 ◽  
Author(s):  
Dominik Kueres ◽  
Alexander Stark ◽  
Martin Herbrand ◽  
Martin Classen

Die numerische Simulation des Tragverhaltens von Beton- und Stahlbetonkonstruktionen mit nicht-linearen Finite-Elemente-Modellen gewinnt in der konstruktiven Ingenieurpraxis zunehmend an Bedeutung. In kommerziellen Finite-Elemente-Programmen stehen dem Anwender unterschiedliche Möglichkeiten zur Abbildung des Betonverhaltens in Form von plastischen Materialmodellen zur Verfügung. Zur Anwendung dieser Materialmodelle ist dabei in der Regel die Kenntnis des Betontragverhaltens unter einaxialer Druck- und Zugbeanspruchung erforderlich. Im vorliegenden Beitrag werden verschiedene Ansätze zur mathematischen Beschreibung dieser konstitutiven Beziehungen für Normalbeton und ultrahochfesten Beton (UHPC) vorgestellt und im Hinblick auf ihre Anwendbarkeit in plastischen Materialmodellen untersucht. Darauf aufbauend werden numerische Simulationen mit einem plastischen Schädigungsmodell unter Verwendung eines einheitlichen Parametersatzes durchgeführt und mit den Ergebnissen experimenteller Untersuchungen verglichen. Die Untersuchungen umfassen hierbei Materialprüfungen an Normalbeton und UHPC unter verschiedenen ein- und mehraxialen Spannungszuständen. Durch die Wahl geeigneter konstitutiver Beziehungen kann für die untersuchten Spannungszustände eine gute Übereinstimmung zwischen simuliertem und experimentell ermitteltem Betontragverhalten erreicht werden.


2019 ◽  
Vol 171 ◽  
pp. 21-33 ◽  
Author(s):  
Chunwang He ◽  
Jingran Ge ◽  
Dexing Qi ◽  
Jiaying Gao ◽  
Yanfei Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document