scholarly journals Understanding the material flow path of friction stir welding process using unthreaded tools

2010 ◽  
Vol 210 (4) ◽  
pp. 603-609 ◽  
Author(s):  
Olivier Lorrain ◽  
Véronique Favier ◽  
Hamid Zahrouni ◽  
Didier Lawrjaniec
2004 ◽  
Vol 824 ◽  
Author(s):  
Therese Källgren ◽  
Lai-Zhe Jin ◽  
Rolf Sandström

AbstractIn an effort to enhance safety for long time disposal of waste nuclear fuel, friction stir welding has been developed as one alternative to seal copper canisters. To avoid the formation of voids and cracks during the welding process, an understanding of the heat and material flow andthereby the evolution of the microstructure, is of great importance. Finite element modelling has been used to simulate the heat and material flow as well as thermal expansion during the friction stir welding process. A model involving heat transfer, material flow, and continuum mechanics has been developed. The steady state solutions have been compared with experimental temperature observations as well as analytical solutions, showing good agreement. Temperature distribution is affected by the welding speed. For a given reference pointperpendicular to the welding direction, a lower welding speed corresponds to a higher peak temperature. The plunging position of welding tool influences the temperature distribution and therefore the displacement distribution of the weldment.


Author(s):  
Behzad Hadi ◽  
ME Aalami-Aleagha ◽  
Saeed Feli

In this paper, the effects of linear speed, rotational speed, and tool radius of the pin and shoulder are investigated on the material flow velocity in friction stir welds. To obtain the maximum material flow velocity by an analytical method, a suggested relation is introduced for the rotational speed and tool optimum radius. The derived relation is based on the assumption of a velocity field in the stirring region. Besides, the effect of the linear speed on material flow velocity is investigated based on continuity and momentum equations. Finally, by using the experimental method and checking the mechanical properties of the welded parts obtained with different rotational speed, linear speed, and tool dimensions, the proposed analytical model is validated. The results indicate that in the friction stir welding process, the significant component effect on the stirring process is generated through the tool pin radius size. Besides, increasing the material flow velocity in the boundary layer increases the yield and ultimate strength of welds. To achieve the high-quality welds, rotational speed and other tool dimensions must be selected considering the equation extracted from the analytical method. Also, to make the maximum life for the pin and its components in friction stir welding of high melting point metals such as steel alloys, the operation is adjusted at a lower linear speed to prevent the destruction of the tool and improve the quality of the joint.


2021 ◽  
Vol 54 (2) ◽  
pp. 363-369
Author(s):  
Zine El Abidine Harchouche ◽  
Abdelkader Lousdad ◽  
Mothtar Zemri ◽  
Nabila Dellal ◽  
Foudil Khelil

Friction Stir Welding (FSW) is a recent assembly process which has been developed at the British Welding Institute (TWI) at the beginning of the 90's. This welding process has gone a rapid development and an increasing success. Many remarkable industrial applications achieved mainly in spatial, aeronautical, automobile, railways, marine and naval industries.... The translation and the rotation of the tool during the FSW process generate the flow and plastic deformation of the material which had been often differently interpreted in contradictory manner. In this paper, an analytical model is proposed to describe the flow of matter in the vicinity of the FSW tool pin during the welding process. Analytical solutions are elaborated on the basis of conventional fluid mechanics theory which is used to solve the associated equation to the mentioned problem based on the Laurent's series (called also Laurent's development). The knowledge of the material flow around the tool pin can lead to a better understanding of the metallurgical phenomena which have a significant effect on the mechanical properties of the welded joint and allows a better description of the speed fields which is worth full for the thermal modelisation since the great part of the thermal power is generated by auto-heating energy. The results obtained on the effect of the speeds on the material flow are in good accordance with the experimental results found in the literature. The study highlights and gives a better understanding of the material flow phenomenon during the Friction Stir Welding process.


2013 ◽  
Vol 774-776 ◽  
pp. 1155-1159 ◽  
Author(s):  
Xiao Cong He

Friction stir welding (FSW) is a solid-state welding process where no gross melting of the material being welded takes place. Numerical modelling of the FSW process can provide realistic prediction of the thermo-mechanical behaviour of the process. Latest literature relating to finite element analysis (FEA) of thermo-mechanical behaviour of FSW process is reviewed in this paper. The recent development in thermo-mechanical modelling of FSW process is described with particular reference to two major factors that influence the performance of FSW joints: material flow and temperature distribution. The main thermo-mechanical modelling used in FSW process are discussed and illustrated with brief case studies from the literature.


Sign in / Sign up

Export Citation Format

Share Document