An analytical and experimental investigation considering the effect of material flow velocity on tensile strength of a steel alloy joint produced by friction stir welding process

Author(s):  
Behzad Hadi ◽  
ME Aalami-Aleagha ◽  
Saeed Feli

In this paper, the effects of linear speed, rotational speed, and tool radius of the pin and shoulder are investigated on the material flow velocity in friction stir welds. To obtain the maximum material flow velocity by an analytical method, a suggested relation is introduced for the rotational speed and tool optimum radius. The derived relation is based on the assumption of a velocity field in the stirring region. Besides, the effect of the linear speed on material flow velocity is investigated based on continuity and momentum equations. Finally, by using the experimental method and checking the mechanical properties of the welded parts obtained with different rotational speed, linear speed, and tool dimensions, the proposed analytical model is validated. The results indicate that in the friction stir welding process, the significant component effect on the stirring process is generated through the tool pin radius size. Besides, increasing the material flow velocity in the boundary layer increases the yield and ultimate strength of welds. To achieve the high-quality welds, rotational speed and other tool dimensions must be selected considering the equation extracted from the analytical method. Also, to make the maximum life for the pin and its components in friction stir welding of high melting point metals such as steel alloys, the operation is adjusted at a lower linear speed to prevent the destruction of the tool and improve the quality of the joint.

2021 ◽  
Vol 54 (2) ◽  
pp. 363-369
Author(s):  
Zine El Abidine Harchouche ◽  
Abdelkader Lousdad ◽  
Mothtar Zemri ◽  
Nabila Dellal ◽  
Foudil Khelil

Friction Stir Welding (FSW) is a recent assembly process which has been developed at the British Welding Institute (TWI) at the beginning of the 90's. This welding process has gone a rapid development and an increasing success. Many remarkable industrial applications achieved mainly in spatial, aeronautical, automobile, railways, marine and naval industries.... The translation and the rotation of the tool during the FSW process generate the flow and plastic deformation of the material which had been often differently interpreted in contradictory manner. In this paper, an analytical model is proposed to describe the flow of matter in the vicinity of the FSW tool pin during the welding process. Analytical solutions are elaborated on the basis of conventional fluid mechanics theory which is used to solve the associated equation to the mentioned problem based on the Laurent's series (called also Laurent's development). The knowledge of the material flow around the tool pin can lead to a better understanding of the metallurgical phenomena which have a significant effect on the mechanical properties of the welded joint and allows a better description of the speed fields which is worth full for the thermal modelisation since the great part of the thermal power is generated by auto-heating energy. The results obtained on the effect of the speeds on the material flow are in good accordance with the experimental results found in the literature. The study highlights and gives a better understanding of the material flow phenomenon during the Friction Stir Welding process.


Measurement ◽  
2018 ◽  
Vol 129 ◽  
pp. 112-118 ◽  
Author(s):  
Noor Zaman Khan ◽  
Arshad Noor Siddiquee ◽  
Zahid A. Khan

Author(s):  
Hosein Atharifar ◽  
Radovan Kovacevic

Minimizing consumed energy in friction stir welding (FSW) is one of the prominent considerations in the process development. Modifications of the FSW tool geometry might be categorized as the initial attempt to achieve a minimum FSW effort. Advanced tool pin and shoulder features as well as a low-conductive backing plate, high-conductive FSW tools equipped with cooling fins, and single or multi-step welding processes are all carried out to achieve a flawless weld with reduced welding effort. The outcomes of these attempts are considerable, primarily when the tool pin traditional designs are replaced with threaded, Trifiute or Trivex geometries. Nevertheless, the problem remains as to how an inclined tool affects the material flow characteristics and the loads applied to the tool. It is experimentally proven that a positive rake angle facilitates the traverse motion of the FSW tool; however, few computational evidences were provided. In this study, numerical material flow and heat transfer analysis are carried out for the presumed tool rake angle ranging from −4° to 4°. Afterwards, the effects of the tool rake angle to the dynamic pressure distribution, strain-rates, and velocity profiles are numerically computed. Furthermore, coefficients of drag, lift, and side force and moment applied to the tool from the visco-plastic material region are computed for each of the tool rake angles. Eventually, this paper confirms that the rake angle dramatically affects the magnitude of the loads applied to the FSW tool, and the developed advanced numerical model might be used to find optimum tool rake angle for other aluminum alloys.


2020 ◽  
Author(s):  
Mahmoud Afshari ◽  
Ehsan Salahshour Rad ◽  
Hossein Norozi Foroushani ◽  
Iraj Sattari Far

Abstract High strength and ductility are some of reasons that make ST14 steel one of the most widely used steels in automotive and aerospace industries. FSW is one of the new methods of solid-state welding that is proposed as a method with desirable mechanical properties.In this study, mechanical and microstructural properties of 1.5mm thick ST14 steel sheets were investigated in the friction stir welding process. The results showed that the welded specimen with rotational speed of 800 rpm and linear motion speed of 80 mm/min had the highest tensile strength of 305MPa. In addition, results of metallographic test showed that the sample with 1000 rpm rotational speed and 50 mm/min linear motion speed had the highest heat input to the piece, and therefore the tungsten carbide particles were separated from the instrument and entered the stirred zone. Also the results of micro hardness test showed that in the welded specimen with rotational speed of 1000 rpm and linear motion speed of 50 mm/min, hardness increased to 115H1 HV in the stirred zone, which is higher than hardness of other samples in same region. It can be claimed that tungsten carbide particles are present in this area.


Author(s):  
C Ganesan ◽  
K Manonmani

Friction stir welding is a high potential technology for joining similar and dissimilar aluminum materials, utilized extensively in aerospace and automotive industrial applications to eradicate the problems like hot cracking, porosity, element loss, etc. due to the fusion welding process. This Research addresses the joining of two dissimilar materials of AA 5754 – H32 and AA 8090T6511 – Al-Li and their mechanical properties analysis with the effects of friction stir welding process parameters like tool rotational speed, welding speed and axial load on weld nugget zone formation quality. The significant roles of different tool pin profiles are also emphasized. A mathematical modeling equation was formed by using regression analysis to optimize the process parameter and found the best tool pin profile for defect-free weld nugget zone and higher tensile and hardness properties. This research also portrays the contribution of various pin profiles and each process parameter on the ultimate tensile strength by response surface methodology. The results indicate that the defect-free weld joints are observed with 1800 r/min of rotational speed, welding speed of 15 mm min−1 and 8.5 kN of axial load with hexagonal pin profile.


Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 621 ◽  
Author(s):  
Haitao Luo ◽  
Tingke Wu ◽  
Peng Wang ◽  
Fengqun Zhao ◽  
Haonan Wang ◽  
...  

Friction stir welding (FSW) material flow has an important influence on weld formation. The finite element model of the FSW process was established. The axial force and the spindle torque of the welding process were collected through experiments. The feasibility of the finite element model was verified by a data comparison. The temperature field of the welding process was analyzed hierarchically. It was found that the temperature on the advancing side is about 20 °C higher than that on the retreating side near the welding seam, but that the temperature difference between the two sides of the middle and lower layers was decreased. The particle tracking technique was used to study the material flow law in different areas of the weld seam. The results showed that part of the material inside the tool pin was squeezed to the bottom of the workpiece. The material on the upper surface tends to move downward under the influence of the shoulder extrusion, while the material on the lower part moves spirally upward under the influence of the tool pin. The material flow amount of the advancing side is higher than that of the retreating side. The law of material flow reveals the possible causes of the welding defects. It was found that the abnormal flow of materials at a low rotation speed and high welding speed is prone to holes and crack defects. The forming reasons and material flow differences in different regions are studied through the microstructure of the joint cross section. The feasibility of a finite element modeling and simulation analysis is further verified.


Author(s):  
Senthil Kumar Velukkudi Santhanam ◽  
Lokesh Rathinaraj ◽  
Rathinasuriyan Chandran ◽  
Shankar Ramaiyan

Friction stir welding (FSW) is a solid-state welding process which is used to join high-strength aircraft aluminum alloys and other metallic alloys which are difficult to weld by conventional fusion welding. In this paper, AA6063-O alloy of 6mm thickness was taken and friction stir welded under the water in order to improve the joint properties. The process parameters considered as rotational speed, welding speed and tool pin profiles (cylindrical, threaded and tapered) are optimized with multi response characteristics including hardness, tensile strength and % elongation. In order to solve a multi response optimization problem, the traditional Taguchi approach is insufficient. To overcome this constraint, a multi criteria decision making approach, namely, techniques for order preference by similarity to ideal solution (TOPSIS) is applied in the present study [13]. The optimal result indicates that the multi response characteristics of the AA6063-O during the submerged friction stir welding process can be enhanced through the TOPSIS approach. The Analysis of Variance (ANOVA) was carried out to investigate the significant parameter for the submerged friction stir welding process. The mechanical properties of the submerged FSW are compared with normal FSW joints.


Sign in / Sign up

Export Citation Format

Share Document