scholarly journals Additive manufacturing of an oxide ceramic by laser beam melting—Comparison between finite element simulation and experimental results

2019 ◽  
Vol 270 ◽  
pp. 106-117 ◽  
Author(s):  
Liliana Moniz ◽  
Qiang Chen ◽  
Gildas Guillemot ◽  
Michel Bellet ◽  
Charles-André Gandin ◽  
...  
2014 ◽  
Vol 945-949 ◽  
pp. 1987-1990
Author(s):  
Si Quan Zhang ◽  
Yu Liu ◽  
Hao Jun Xu ◽  
Chang Yin

The structure of conventional bobbin probe was modified to improve the detection sensitivity of defects in metal tube. Based on the results of finite element simulation, several types of modified probes are fabricated and used to detect artificial defects in tube and the defect signals are acquired and analyzed. The simulation and experimental results verified that the modified eddy current probes are more sensitive to non-axial defects than conventional bobbin probe and can improve the reliability of tube inspection.


2016 ◽  
Vol 3 (4) ◽  
pp. 36 ◽  
Author(s):  
Ahmadreza Jahadakbar ◽  
Narges Shayesteh Moghaddam ◽  
Amirhesam Amerinatanzi ◽  
David Dean ◽  
Haluk Karaca ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3841 ◽  
Author(s):  
Zhang ◽  
Xiang ◽  
Wu ◽  
Feng ◽  
Shi ◽  
...  

Silicon carbide particle-reinforced aluminum matrix composite (SiCp/Al) has been widely used in the military and aerospace industry due to its special performance; however, there remain many problems in the processing. The present paper introduces an ultrasonic vibration tensile apparatus and a composite tensile specimen and performs Abaqus finite element simulation on high-volume SiCp/Al. The results show that the stress-strain curve increases linearly during conventional tensile strength; the intermittent vibration tensile strength is similar to the full course vibration tensile strength: The magnitude of the stress reduction increases as the amplitude of the ultrasound increases and the vibration frequency increases. The tensile rate is inversely proportional to the magnitude of the stress reduction, and in the ultrasonic parameters, the amplitude has the greatest influence on the magnitude of the stress reduction, followed by the tensile rate; additionally, the frequency has the least influence on the magnitude of the stress reduction. The experimental results show that the simulation results are consistent with the experimental results.


2020 ◽  
Vol 90 (15-16) ◽  
pp. 1837-1850 ◽  
Author(s):  
Rimantas Barauskas ◽  
Audrone Sankauskaite ◽  
Vitalija Rubeziene ◽  
Ausra Gadeikyte ◽  
Virginija Skurkyte-Papieviene ◽  
...  

This study presents the developed computational finite element models for transient heat transfer analysis in fabrics enriched by phase change materials along with efforts to provide validation on the basis of obtained experimental results. The environment-friendly butyl stearate is used as a phase change material. Its melting/heating absorption takes place in temperature range from 19℃ to 34℃, and the solidification/heat release occurs from 34℃ to 19℃. An important aspect in this analysis is the investigation of appropriateness of the material samples dimensions selected for effective heat capacity against temperature measurements. For this purpose, we used the combined experimental and finite element simulation-based analysis. A similar computational procedure enabled us to estimate the effective latent specific heat relationship of the fabric with phase change materials coating. The direct usage of differential scanning calorimetry (DSC) measurement-based specific heat relationships against temperature in the finite element models ensured good compliance of the computed results with the experiment. For validation of the developed computational models the infrared radiation heating-cooling experiments on fabrics with different deposits of a phase change material were performed. The noticeable influence of content of phase change materials for transient thermal behavior during heating-cooling cycles was determined. The experimental results have been compared against the finite element simulation results.


2012 ◽  
Vol 217-219 ◽  
pp. 2322-2327
Author(s):  
Yong Dong Wu ◽  
Yuan Shuai Guo ◽  
He Li

In this paper,Fracture Toughness of TC11 alloy material at normal temperature is found out by Finite Element Simulation and Moire Interferometry. The feasibility and veracity of Finite Element Simulation is shown by comparing numerical and experimental results.


Sign in / Sign up

Export Citation Format

Share Document