scholarly journals Can vitamin C affect the KBrO3 induced oxidative stress on left ventricular myocardium of adult male albino rats? A histological and immunohistochemical study

2015 ◽  
Vol 3 (3) ◽  
pp. 120-136 ◽  
Author(s):  
Mohammad E.E. El-Deeb ◽  
Amal A.A. Abd-El-Hafez
2007 ◽  
Vol 292 (1) ◽  
pp. H224-H230 ◽  
Author(s):  
František Kolář ◽  
Jana Ježková ◽  
Patricie Balková ◽  
Jiří Břeh ◽  
Jan Neckář ◽  
...  

The aim was to determine whether increased oxidative stress during the adaptation to chronic intermittent hypoxia (CIH) plays a role in the induction of improved cardiac ischemic tolerance. Adult male Wistar rats were exposed to CIH in a hypobaric chamber (7,000 m, 8 h/day, 5 days/wk, 24–30 exposures). Half of the animals received antioxidant N-acetylcysteine (NAC; 100 mg/kg) daily before the exposure; the remaining rats received saline. Control rats were kept under normoxia and treated in a corresponding manner. One day after the last exposure (and/or NAC injection), anesthetized animals were subject to 20 min of coronary artery occlusion and 3 h of reperfusion for determination of infarct size. In parallel subgroups, biochemical analyses of the left ventricular myocardium were performed. Adaptation to CIH reduced infarct size from 56.7 ± 4.5% of the area at risk in the normoxic controls to 27.7 ± 4.9%. NAC treatment decreased the infarct size in the controls to 42.0 ± 3.4%, but it abolished the protection provided by CIH (to 41.1 ± 4.9%). CIH decreased the reduced-to-oxidized glutathione ratio and increased the relative amount of PKC isoform-δ in the particulate fraction; NAC prevented these effects. The expression of PKC-ε was decreased by CIH and not affected by NAC. Activities of superoxide dismutase, catalase, and glutathione peroxidase were affected by neither CIH nor NAC treatment. It is concluded that oxidative stress associated with CIH plays a role in the development of increased cardiac ischemic tolerance. The infarct size-limiting mechanism of CIH seems to involve the PKC-δ-dependent pathway but apparently not the increased capacity of major antioxidant enzymes.


2021 ◽  
Vol 34 (3) ◽  
pp. 299-299
Author(s):  
Yu Feng ◽  
Man-li Zhou ◽  
Jian-zhang Wang ◽  
Jia-qi Zhang ◽  
Shu-le Qian ◽  
...  

Abstract Background To investigate the effects of telmisartan on the protein profiles of the left ventricular myocardium in spontaneously hypertensive rats (SHR). Methods Sixteen SHR were randomly divided into control and telmisartan treatment groups. Rats were treated with sterile water (10 ml/kg) or telmisartan (4.33 mg/kg) by gavage for 12 weeks. Wistar-Kyoto (WKY) rats treated with sterile water (10 ml/kg) as controls. At the end of 12 weeks of control or telmisartan treatment, rats were sacrificed, and hearts were collected for protein preparations, isotope labeling, and mass spectrometric analysis. Results In total, there were 23 differentially expressed proteins in the left ventricular myocardium between control and telmisartan treatment groups in SHR. Compared with the telmisartan group, the upregulated proteins in the SHR were dual-specificity mitogen-activated protein kinase kinase 3-like, transgelin, and haptoglobin subtype 2. The downregulated proteins in the SHR were as follows: von Willebrand factor (fragment), kininogen 1, small ribonucleoprotein-related protein, fibrinogen beta chain, protein mass 3 (fragment), proteasome 26s, heat shock protein 27-related protein 1, tenascin X, fibronectin subtype 2, transferrin receptor protein, platelets 1, cathepsin L1, complement factor B, isoform CRA_b, fibrinogen isomer, immunoglobulin heavy chain (γ polypeptide), and α 1 antiprotease. Conclusions Telmisartan differentially regulates myocardial protein expression in hypertensive rats including heat shock protein 27, fibrinogen, fibronectin, proteasome 26s and transgelin, as well as proteins in biochemical, metabolic, and signal transduction pathways. These changes in protein expression may contribute to the antihypertrophic effects of telmisartan in hypertension.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Yankun Lyu ◽  
Vipin K. Verma ◽  
Younjee Lee ◽  
Iosif Taleb ◽  
Rachit Badolia ◽  
...  

AbstractIt is well established that the aging heart progressively remodels towards a senescent phenotype, but alterations of cellular microstructure and their differences to chronic heart failure (HF) associated remodeling remain ill-defined. Here, we show that the transverse tubular system (t-system) and proteins underlying excitation-contraction coupling in cardiomyocytes are characteristically remodeled with age. We shed light on mechanisms of this remodeling and identified similarities and differences to chronic HF. Using left ventricular myocardium from donors and HF patients with ages between 19 and 75 years, we established a library of 3D reconstructions of the t-system as well as ryanodine receptor (RyR) and junctophilin 2 (JPH2) clusters. Aging was characterized by t-system alterations and sarcolemmal dissociation of RyR clusters. This remodeling was less pronounced than in HF and accompanied by major alterations of JPH2 arrangement. Our study indicates that targeting sarcolemmal association of JPH2 might ameliorate age-associated deficiencies of heart function.


2021 ◽  
Vol 8 (2) ◽  
pp. 9
Author(s):  
Nina C. Wunderlich ◽  
Siew Yen Ho ◽  
Nir Flint ◽  
Robert J. Siegel

The morphological changes that occur in myxomatous mitral valve disease (MMVD) involve various components, ultimately leading to the impairment of mitral valve (MV) function. In this context, intrinsic mitral annular abnormalities are increasingly recognized, such as a mitral annular disjunction (MAD), a specific anatomical abnormality whereby there is a distinct separation between the mitral annulus and the left atrial wall and the basal portion of the posterolateral left ventricular myocardium. In recent years, several studies have suggested that MAD contributes to myxomatous degeneration of the mitral leaflets, and there is growing evidence that MAD is associated with ventricular arrhythmias and sudden cardiac death. In this review, the morphological characteristics of MAD and imaging tools for diagnosis will be described, and the clinical and functional aspects of the coincidence of MAD and myxomatous MVP will be discussed.


2014 ◽  
Vol 112 (11) ◽  
pp. 951-959 ◽  
Author(s):  
Morten Eriksen ◽  
Arnfinn Ilebekk ◽  
Alessandro Cataliotti ◽  
Cathrine Rein Carlson ◽  
Torstein Lyberg ◽  
...  

SummaryBradykinin (BK) receptor-2 (B2R) and β2-adrenergic receptor (β2AR) have been shown to form heterodimers in vitro. However, in vivo proofs of the functional effects of B2R-β2AR heterodimerisation are missing. Both BK and adrenergic stimulation are known inducers of tPA release. Our goal was to demonstrate the existence of B2R-β2AR heterodimerisation in myocardium and to define its functional effect on cardiac release of tPA in vivo. We further investigated the effects of a non-selective β-blocker on this receptor interplay. To investigate functional effects of B2R-β2AR heterodimerisation (i. e. BK transactivation of β2AR) in vivo, we induced serial electrical stimulation of cardiac sympathetic nerves (SS) in normal pigs that underwent concomitant BK infusion. Both SS and BK alone induced increases in cardiac tPA release. Importantly, despite B2R desensitisation, simultaneous BK infusion and SS (BK+SS) was characterised by 2.3 ± 0.3-fold enhanced tPA release compared to SS alone. When β-blockade (propranolol) was introduced prior to BK+SS, tPA release was inhibited. A persistent B2R-β2AR heterodimer was confirmed in BK-stimulated and nonstimulated left ventricular myocardium by immunoprecipitation studies and under non-reducing gel conditions. All together, these results strongly suggest BK transactivation of β2AR leading to enhanced β2AR-mediated release of tPA. Importantly, non-selective β-blockade inhibits both SS-induced release of tPA and the functional effects of B2R-β2AR heterodimerisation in vivo, which may have important clinical implications.


Sign in / Sign up

Export Citation Format

Share Document