scholarly journals Function of the C-terminal Domain of the DEAD-box Protein Mss116p Analyzed in Vivo and in Vitro

2008 ◽  
Vol 375 (5) ◽  
pp. 1344-1364 ◽  
Author(s):  
Georg Mohr ◽  
Mark Del Campo ◽  
Sabine Mohr ◽  
Quansheng Yang ◽  
Huijue Jia ◽  
...  
Keyword(s):  
Dead Box ◽  

2018 ◽  
Author(s):  
Ruchika Sachdev ◽  
Maria Hondele ◽  
Miriam Linsenmeier ◽  
Pascal Vallotton ◽  
Christopher F. Mugler ◽  
...  

AbstractProcessing bodies (PBs) are cytoplasmic mRNP granules that assemble via liquid-liquid phase separation and are implicated in the decay or storage of mRNAs. How PB assembly is regulated in cells remains unclear. We recently identified the ATPase activity of the DEAD-box protein Dhh1 as a key regulator of PB dynamics and demonstrated that Not1, an activator of the Dhh1 ATPase and member of the CCR4-NOT deadenylase complex inhibits PB assembly in vivo [Mugler et al., 2016]. Here, we show that the PB component Pat1 antagonizes Not1 and promotes PB assembly via its direct interaction with Dhh1. Intriguingly, in vivo PB dynamics can be recapitulated in vitro, since Pat1 enhances the phase separation of Dhh1 and RNA into liquid droplets, whereas Not1 reverses Pat1-Dhh1-RNA condensation. Overall, our results uncover a function of Pat1 in promoting the multimerization of Dhh1 on mRNA, thereby aiding the assembly of large multivalent mRNP granules that are PBs.



eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Suna Gulay ◽  
Neha Gupta ◽  
Jon R Lorsch ◽  
Alan G Hinnebusch

Yeast DEAD-box helicase Ded1 stimulates translation initiation, particularly of mRNAs with structured 5'UTRs. Interactions of the Ded1 N-terminal domain (NTD) with eIF4A, and Ded1-CTD with eIF4G, subunits of eIF4F, enhance Ded1 unwinding activity and stimulation of preinitiation complex (PIC) assembly in vitro. However, the importance of these interactions, and of Ded1-eIF4E association, in vivo were poorly understood. We identified separate amino acid clusters in the Ded1-NTD required for binding to eIF4A or eIF4E in vitro. Disrupting each cluster selectively impairs native Ded1 association with eIF4A or eIF4E, and reduces cell growth, polysome assembly, and translation of reporter mRNAs with structured 5'UTRs. It also impairs Ded1 stimulation of PIC assembly on a structured mRNA in vitro. Ablating Ded1 interactions with eIF4A/eIF4E unveiled a requirement for the Ded1-CTD for robust initiation. Thus, Ded1 function in vivo is stimulated by independent interactions of its NTD with eIF4E and eIF4A, and its CTD with eIF4G.



eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ruchika Sachdev ◽  
Maria Hondele ◽  
Miriam Linsenmeier ◽  
Pascal Vallotton ◽  
Christopher F Mugler ◽  
...  

Processing bodies (PBs) are cytoplasmic mRNP granules that assemble via liquid–liquid phase separation and are implicated in the decay or storage of mRNAs. How PB assembly is regulated in cells remains unclear. Previously, we identified the ATPase activity of the DEAD-box protein Dhh1 as a key regulator of PB dynamics and demonstrated that Not1, an activator of the Dhh1 ATPase and member of the CCR4-NOT deadenylase complex inhibits PB assembly in vivo (Mugler et al., 2016). Here, we show that the PB component Pat1 antagonizes Not1 and promotes PB assembly via its direct interaction with Dhh1. Intriguingly, in vivo PB dynamics can be recapitulated in vitro, since Pat1 enhances the phase separation of Dhh1 and RNA into liquid droplets, whereas Not1 reverses Pat1-Dhh1-RNA condensation. Overall, our results uncover a function of Pat1 in promoting the multimerization of Dhh1 on mRNA, thereby aiding the assembly of large multivalent mRNP granules that are PBs.



2011 ◽  
Vol 411 (3) ◽  
pp. 661-679 ◽  
Author(s):  
Jeffrey P. Potratz ◽  
Mark Del Campo ◽  
Rachel Z. Wolf ◽  
Alan M. Lambowitz ◽  
Rick Russell


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Christopher Frederick Mugler ◽  
Maria Hondele ◽  
Stephanie Heinrich ◽  
Ruchika Sachdev ◽  
Pascal Vallotton ◽  
...  

Translational repression and mRNA degradation are critical mechanisms of posttranscriptional gene regulation that help cells respond to internal and external cues. In response to certain stress conditions, many mRNA decay factors are enriched in processing bodies (PBs), cellular structures involved in degradation and/or storage of mRNAs. Yet, how cells regulate assembly and disassembly of PBs remains poorly understood. Here, we show that in budding yeast, mutations in the DEAD-box ATPase Dhh1 that prevent ATP hydrolysis, or that affect the interaction between Dhh1 and Not1, the central scaffold of the CCR4-NOT complex and an activator of the Dhh1 ATPase, prevent PB disassembly in vivo. Intriguingly, this process can be recapitulated in vitro, since recombinant Dhh1 and RNA, in the presence of ATP, phase-separate into liquid droplets that rapidly dissolve upon addition of Not1. Our results identify the ATPase activity of Dhh1 as a critical regulator of PB formation.



2021 ◽  
Author(s):  
Xin Liu ◽  
Haina Huang ◽  
Katrin Karbstein

AbstractAssembly of ribosomal subunits occurs via parallel pathways, which accelerate the process and render it more robust. Nonetheless, in vitro analyses have also demonstrated that some assembly pathways are dead-ends, presumably due to rRNA misfolding. If and how these non-productive pathways are avoided during assembly in vivo remains unknown. Here we use a combination of biochemical, genetic, proteomic and structural analyses to demonstrate a role for assembly factors in biasing the folding landscape away from non-productive intermediates. By binding Rrp36, Rrp5 is prevented from forming a premature interaction with the platform, which leads to a dead-end intermediate, and a misassembled platform that is functionally defective. The DEAD-box ATPase Has1 separates Rrp5 and Rrp36, allowing Rrp5 to reposition to the platform, thereby promoting ribosome assembly and enabling rRNA processing. Thus, Rrp36 establishes an ATP-dependent regulatory point that ensures correct platform assembly by opening a new folding channel that avoids funnels to misfolding.



2020 ◽  
Author(s):  
Hilal Yeter-Alat ◽  
Naïma Belgareh-Touzé ◽  
Emmeline Huvelle ◽  
Molka Mokdadi ◽  
Josette Banroques ◽  
...  

ABSTRACTThe DEAD-box RNA helicase Ded1 is an essential yeast protein involved in translation initiation. It belongs to the DDX3 subfamily of proteins implicated in developmental and cell-cycle regulation. In vitro, the purified Ded1 protein is an ATP-dependent RNA binding protein and an RNA-dependent ATPase, but it lacks RNA substrate specificity and enzymatic regulation. Here we demonstrate by yeast genetics, in situ localization and in vitro biochemical approaches that Ded1 is associated with, and regulated by, the signal recognition particle (SRP), which is a universally conserved ribonucleoprotein complex required for the co-translational translocation of polypeptides into the endoplasmic reticulum lumen and membrane. Ded1 is physically associated with SRP components in vivo and in vitro. Ded1 is genetically linked with SRP proteins. Finally, the enzymatic activity of Ded1 is inhibited by SRP21 with SCR1 RNA. We propose a model where Ded1 actively participates in the translocation of proteins during translation. Our results open a new comprehension of the cellular role of Ded1 during translation.



2021 ◽  
Author(s):  
Jun Gao ◽  
Zhaofeng Gao ◽  
Andrea A. Putnam ◽  
Alicia K. Byrd ◽  
Sarah L. Venus ◽  
...  

G-quadruplex (G4) DNA inhibits RNA unwinding activity but promotes liquid–liquid phase separation of the DEAD-box helicase Ded1p in vitro and in cells. This highlights multifaceted effects of G4DNA on an enzyme with intrinsically disordered domains.



1994 ◽  
Vol 14 (5) ◽  
pp. 3197-3207
Author(s):  
P R Caron ◽  
P Watt ◽  
J C Wang

A set of carboxy-terminal deletion mutants of Saccharomyces cerevisiae DNA topoisomerase II were constructed for studying the functions of the carboxyl domain in vitro and in vivo. The wild-type yeast enzyme is a homodimer with 1,429 amino acid residues in each of the two polypeptides; truncation of the C terminus to Ile-1220 has little effect on the function of the enzyme in vitro or in vivo, whereas truncations extending beyond Gln-1138 yield completely inactive proteins. Several mutant enzymes with C termini in between these two residues were found to be catalytically active but unable to complement a top2-4 temperature-sensitive mutation. Immunomicroscopy results suggest that the removal of a nuclear localization signal in the C-terminal domain is likely to contribute to the physiological dysfunction of these proteins; the ability of these mutant proteins to relax supercoiled DNA in vivo shows, however, that at least some of the mutant proteins are present in the nuclei in a catalytically active form. In contrast to the ability of the catalytically active mutant proteins to relax supercoiled intracellular DNA, all mutants that do not complement the temperature-dependent lethality and high frequency of chromosomal nondisjunction of top2-4 were found to lack decatenation activity in vivo. The plausible roles of the DNA topoisomerase II C-terminal domain, in addition to providing a signal for nuclear localization, are discussed in the light of these results.



2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Encarnación Medina-Carmona ◽  
Rogelio J. Palomino-Morales ◽  
Julian E. Fuchs ◽  
Esperanza Padín-Gonzalez ◽  
Noel Mesa-Torres ◽  
...  

Abstract Protein dynamics is essential to understand protein function and stability, even though is rarely investigated as the origin of loss-of-function due to genetic variations. Here, we use biochemical, biophysical, cell and computational biology tools to study two loss-of-function and cancer-associated polymorphisms (p.R139W and p.P187S) in human NAD(P)H quinone oxidoreductase 1 (NQO1), a FAD-dependent enzyme which activates cancer pro-drugs and stabilizes several oncosuppressors. We show that p.P187S strongly destabilizes the NQO1 dimer in vitro and increases the flexibility of the C-terminal domain, while a combination of FAD and the inhibitor dicoumarol overcome these alterations. Additionally, changes in global stability due to polymorphisms and ligand binding are linked to the dynamics of the dimer interface, whereas the low activity and affinity for FAD in p.P187S is caused by increased fluctuations at the FAD binding site. Importantly, NQO1 steady-state protein levels in cell cultures correlate primarily with the dynamics of the C-terminal domain, supporting a directional preference in NQO1 proteasomal degradation and the use of ligands binding to this domain to stabilize p.P187S in vivo. In conclusion, protein dynamics are fundamental to understanding loss-of-function in p.P187S and to develop new pharmacological therapies to rescue this function.



Sign in / Sign up

Export Citation Format

Share Document