scholarly journals Multiple Conformations of Gal3 Protein Drive the Galactose-Induced Allosteric Activation of the GAL Genetic Switch of Saccharomyces cerevisiae

2017 ◽  
Vol 429 (1) ◽  
pp. 158-176 ◽  
Author(s):  
Rajesh Kumar Kar ◽  
Hungyo Kharerin ◽  
Ranjith Padinhateeri ◽  
Paike Jayadeva Bhat
2015 ◽  
Author(s):  
Rajesh Kumar Kar ◽  
Hungyo kharerin ◽  
Ranjith Padinhateeri ◽  
Jayadeva Bhat

Gal3p is an allosteric monomeric protein which activates the GAL genetic switch of Saccharomyces cerevisiae in response to galactose. Expression of constitutive mutant of Gal3p or over-expression of wild-type Gal3p activates the GAL switch in the absence of galactose. These data suggest that Gal3p exists as an ensemble of active and inactive conformations. Structural data has indicated that Gal3p exists in open (inactive) and closed (active) conformations. However, mutant of Gal3p that predominantly exists in inactive conformation and yet capable of responding to galactose has not been isolated. To understand the mechanism of allosteric transition, we have isolated a triple mutant of Gal3p with V273I, T404A and N450D substitutions which upon over-expression fails to activate the GAL switch on its own, but activates the switch in response to galactose. Over-expression of Gal3p mutants with single or double mutations in any of the three combinations failed to exhibit the behavior of the triple mutant. Molecular dynamics analysis of the wild-type and the triple mutant along with two previously reported constitutive mutants suggests that the wild-type Gal3p may also exist in super-open conformation. Further, our results suggest that the dynamics of residue F237 situated in the hydrophobic pocket located in the hinge region drives the transition between different conformations. Based on our study and what is known in human glucokinase, we suggest that the above mechanism could be a general theme in causing the allosteric transition.


2008 ◽  
Vol 7 (12) ◽  
pp. 2061-2068 ◽  
Author(s):  
Raymond Wightman ◽  
Rachel Bell ◽  
Richard J. Reece

ABSTRACT In Saccharomyces cerevisiae, the GAL genes encode the enzymes required for galactose metabolism. Regulation of these genes has served as the paradigm for eukaryotic transcriptional control over the last 50 years. The switch between inert and active gene expression is dependent upon three proteins—the transcriptional activator Gal4p, the inhibitor Gal80p, and the ligand sensor Gal3p. Here, we present a detailed spatial analysis of the three GAL regulatory proteins produced from their native genomic loci. Using a novel application of photobleaching, we demonstrate, for the first time, that the Gal3p ligand sensor enters the nucleus of yeast cells in the presence of galactose. Additionally, using Förster resonance energy transfer, we show that the interaction between Gal3p and Gal80p occurs throughout the yeast cell. Taken together, these data challenge existing models for the cellular localization of the regulatory proteins during the induction of GAL gene expression by galactose and suggest a mechanism for the induction of the GAL genes in which galactose-bound Gal3p moves from the cytoplasm to the nucleus to interact with the transcriptional inhibitor Gal80p.


2002 ◽  
Vol 363 (3) ◽  
pp. 515-520 ◽  
Author(s):  
David J. TIMSON ◽  
Helen C. ROSS ◽  
Richard J. REECE

The genes encoding the enzymes required for galactose metabolism in Saccharomyces cerevisiae are controlled at the level of transcription by a genetic switch consisting of three proteins: a transcriptional activator, Gal4p; a transcriptional repressor, Gal80p; and a ligand sensor, Gal3p. The switch is turned on in the presence of two small molecule ligands, galactose and ATP. Gal3p shows a high degree of sequence identity with Gal1p, the yeast galactokinase. We have mapped the interaction between Gal80p and Gal3p, which only occurs in the presence of both ligands, using protease protection experiments and have shown that this involves amino acid residue 331 of Gal80p. Gel-filtration experiments indicate that Gal3p, or the galactokinase Gal1p, interact directly with Gal80p to form a complex with 1:1 stoichiometry.


2001 ◽  
Vol 36 (2) ◽  
pp. 196-201 ◽  
Author(s):  
F. Seibold ◽  
O. Stich ◽  
R. Hufnagl ◽  
S. Kamil ◽  
M. Scheurlen

2007 ◽  
Vol 45 (08) ◽  
Author(s):  
S Schmechel ◽  
V Schachinger ◽  
F Seibold ◽  
C Tillack ◽  
T Ochsenkühn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document