scholarly journals Fracture, roughness and phase transformation in CAD/CAM milling and subsequent surface treatments of lithium metasilicate/disilicate glass-ceramics

Author(s):  
Abdur-Rasheed Alao ◽  
Richard Stoll ◽  
Xiao-Fei Song ◽  
John R. Abbott ◽  
Yu Zhang ◽  
...  
Author(s):  
Veber Luiz Bomfim Azevedo ◽  
Eduardo Fernandes Castro ◽  
Jean‐Jacques Bonvent ◽  
Oswaldo Scopin Andrade ◽  
Fábio Dupart Nascimento ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 381 ◽  
Author(s):  
Roxana-Diana Vasiliu ◽  
Sorin Daniel Porojan ◽  
Mihaela Ionela Bîrdeanu ◽  
Liliana Porojan

Dental ceramic restorations are widely spread nowadays due to their aesthetics and biocompatibility. In time, the colour and structure of these ceramic materials can be altered by aging processes. How does artificial aging affect the optical and surface roughness of ceramics? This study aims to assess the effect of thermocycling, surface treatments and microstructure upon translucency, opalescence and surface roughness on CAD-CAM and heat-pressed glass-ceramic. Forty-eight samples (1.5 mm thickness) were fabricated from six types of A2 MT ceramic: heat-pressed and milled glass-ceramic (feldspathic, lithium disilicate and zirconia reinforced lithium silicate). The samples were obtained respecting the manufacturer’s instructions. The resulted surfaces (n = 96) were half glazed and half polished. The samples were subjected to thermocycling (10,000 cycles) and roughness values (Ra and Rz), colour coordinates (L*, a*, b*) and microstructural analyses were assessed before and after thermocycling. Translucency (TP) and opalescence (OP) were calculated. Values were statistically analysed using ANOVA test (one way). TP and OP values were significantly different between heat-pressed and milled ceramics before and also after thermocycling (p < 0.001). Surface treatments (glazing and polishing) had a significant effect on TP and OP and surface roughness (p < 0.05). The heat-pressed and milled zirconia reinforced lithium silicate glass-ceramic experienced a loss in TP and OP. Ra and Rz increased for the glazed samples, TP and OP decreased for all the samples after thermocycling. Microstructural analyse revealed that glazed surfaces were more affected by the thermocycling and especially for the zirconia reinforced lithium silicate ceramic. Optical properties and surface roughness of the chosen ceramic materials were affected by thermocycling, surface treatments and microstructural differences. The least affected of the ceramics was the lithium disilicate ceramic heat-pressed polished and glazed.


Ceramics ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 467-475
Author(s):  
Muna Bebsh ◽  
Asmaa Haimeur ◽  
Rodrigo França

Objective: This study aimed to investigate and compare the effect of various surface treatments on the micromorphology and the roughness of four CAD/CAM lithium silicate-based glass-ceramics (LSGC). Method: Eighty specimens of four LDGC materials (IPS e. max® CAD (Ivoclar-Vivadent, Liechtenstein, Schaan), Vita Suprinity® (Vita Zahnfabrik, Bad Säckingen, Germany), Celtra Duo® (Dentsply, Hanau-Wolfgang, Germany) and n!ce (Straumann, Basel, Switzerland)) were used for this study. All specimens were highly polished with 400, 600, 1200 grit silicon carbide paper and then polished with 3 µm and 1 µm polycrystalline diamond suspension liquid with grinding devices. Each group of ceramic was assigned to one of the following three surface treatments (1) sand-blasting (SB) with 50 µm Al2O3 at 70 psi for 10s, (2) hydrofluoric acid etching (HF) with 5% hydrofluoric acid, according to the manufacturer instructions, (3) and a combination of sand-blasting and hydrofluoric acid (SB + HF). All specimens were cleaned with ethanol for 2 min and placed in an ultrasonic unit with distilled water for 15 min. The microstructure was analyzed by scanning electron microscopy (SEM). The surface roughness and topography were evaluated with atomic force microscopy in tapping mode (AFM). Statistical analysis was done using two-way ANOVA and Tukey tests (α = 5%). Results: All surface treatments had a significant effect on LDGC surface roughness compared to the untreated surface (p < 0.05). The sand-blasting treatment had a significantly higher mean surface roughness value for Vita Suprinity and Celtra Duo compared to other surface treatments (p < 0.05). However, there was no significant difference for surface roughness between sand-blasting and sand-blasting + etching for e.max CAD and n!ce. The hydrofluoric acid produced less surface roughness compared to other surface treatments but was able to change the surface structure. (5) Conclusions: The sand-blasting + etching treatment could be a sufficient method to produce surface roughness for all LSGC types.


2020 ◽  
Vol 2 (1) ◽  
pp. 4-11
Author(s):  
Marcia Borba ◽  
Paula Benetti ◽  
Giordana P. Furini ◽  
Kátia R. Weber ◽  
Tábata M. da Silva

Background: The use of zirconia-based ceramics to produce monolithic restorations has increased due to improvements in the optical properties of the materials. Traditionally, zirconiabased ceramics were veneered with porcelain or glass-ceramic and were not directly exposed to the oral environment. Therefore, there are several doubts regarding the wear of the monolithic zirconia restoration and their antagonists. Additionally, different surface treatments are recommended to promote a smooth surface, including glaze and several polishing protocols. To support the correct clinical application, it is important to understand the advantages and limitations of each surface treatment. Objective: The aim of this short literature review is to investigate the factors that may affect the wear of monolithic zirconia restorations in service and their antagonists. Methods: Pubmed/Medline database was accessed to review the literature from a 10-year period using the keywords: zirconia, monolithic, prosthesis, wear. Both clinical and in vitro studies were included in the review. Results: Studies investigated the effect of several surface treatments, including grinding with diamond- burs, polishing and glazing, on the surface roughness, phase transformation and wear capacity of monolithic zirconia. The wear behavior of monolithic zirconia was frequently compared to the wear behavior of other ceramics, such as feldspathic porcelain, lithium disilicate-based glassceramic and leucite-reinforced glass-ceramic. Human tooth, ceramics and resin composites were used as antagonist in the investigations. Only short-term clinical studies are available (up to 2 years). Conclusion: Literature findings suggest that zirconia monolithic restorations are wear resistant and unlikely to cause excessive wear to the antagonist, especially when compared to feldspathic porcelain and glass-ceramics. Monolithic zirconia should be polished rather than glazed. Yet, none of the polishing systems studied was able to completely restore the initial surface conditions of zirconia after being adjusted with burs. More clinical evidence of the antagonist tooth wear potential of monolithic zirconia is needed.


2016 ◽  
Vol 116 (5) ◽  
pp. 797-802 ◽  
Author(s):  
Nuno Guilherme ◽  
Chandur Wadhwani ◽  
Cheng Zheng ◽  
Kwok-Hung Chung

Sign in / Sign up

Export Citation Format

Share Document