scholarly journals D-band strain underestimates fibril strain for twisted collagen fibrils at low strains

Author(s):  
Matthew P. Leighton ◽  
Andrew D. Rutenberg ◽  
Laurent Kreplak
Keyword(s):  
Author(s):  
H. Clarke Anderson ◽  
Priscilla R. Coulter

Epiphyseal cartilage matrix contains fibrils and particles of at least 5 different types: 1. Banded collagen fibrils, present throughout the matrix, but not seen in the lacunae. 2. Non-periodic fine fibrils <100Å in diameter (Fig. 1), which are most notable in the lacunae, and may represent immature collagen. 3. Electron dense matrix granules (Fig. 1) which are often attached to fine fibrils and collagen fibrils, and probably contain protein-polysaccharide although the possibility of a mineral content has not been excluded. 4. Matrix vesicles (Fig. 2) which show a selective distribution throughout the epiphysis, and may play a role in calcification. 5. Needle-like apatite crystals (Fig. 2).Blocks of formalin-fixed epiphysis from weanling mice were digested with the following agents in 0.1M phosphate buffer: a) 5% ethylenediaminetetraacetate (EDTA) at pH 8.3, b) 0.015% bovine testicular hyaluronidase (Sigma, type IV, 750 units/mg) at pH 5.5, and c) 0.1% collagenase (Worthington, chromatograhically pure, 200 units/mg) at pH 7.4. All digestions were carried out at 37°C overnight. Following digestion tissues were examined by light and electron microscopy to determine changes in the various fibrils and particles of the matrix.


Author(s):  
C. N. Sun ◽  
H. J. White

Previously, we have reported on extracellular cross-striated banded structures in human connective tissues of a variety of organs (1). Since then, more material has been examined and other techniques applied. Recently, we studied a fibrocytic meningioma of the falx. After the specimen was fixed in 4% buffered glutaraldehyde and post-fixed in 1% buffered osmium tetroxide, other routine procedures were followed for embedding in Epon 812. Sections were stained with uranyl acetate and lead citrate. There were numerous cross striated banded structures in aggregated bundle forms found in the connecfive tissue of the tumor. The banded material has a periodicity of about 450 Å and where it assumes a filamentous arrangement, appears to be about 800 Å in diameter. In comparison with the vicinal native collagen fibrils, the banded material Is sometimes about twice the diameter of native collagen.


Author(s):  
Grace C.H. Yang

The size and organization of collagen fibrils in the extracellular matrix is an important determinant of tissue structure and function. The synthesis and deposition of collagen involves multiple steps which begin within the cell and continue in the extracellular space. High-voltage electron microscopic studies of the chick embryo cornea and tendon suggested that the extracellular space is compartmentalized by the fibroblasts for the regulation of collagen fibril, bundle, and tissue specific macroaggregate formation. The purpose of this study is to gather direct evidence regarding the association of the fibroblast cell surface with newly formed collagen fibrils, and to define the role of the fibroblast in the control and the precise positioning of collagen fibrils, bundles, and macroaggregates during chick tendon development.


1987 ◽  
Vol 58 (02) ◽  
pp. 786-789 ◽  
Author(s):  
O Behnke

SummaryAdhesion of rat blood platelets to native rat tail collagen fibrils was studied in the electron microscope under conditions that preserved collagen-associated proteoglycans (CAPG). The CAPG molecules were aligned in chain-like configurations that encircled the fibrils with a 65 nm period; they appeared to coat the fibrils completely and extended 60-100 nm away from the fibril. The initial platelet-fibril contact occurred between the platelet glycocalyx and the CAPG of the fibrils i.e. between two surfaces with net-negative charges. When close contact was established between the fibril surface proper and the platelet membrane, CAPG were not identified in the area of contact, and the collagen-platelet distance was reduced to a ~10-12 nm wide gap traversed by delicate links in register with fibril periodicities.


2021 ◽  
Author(s):  
Mario Milazzo ◽  
Alessio David ◽  
Gang Seob Jung ◽  
Serena Danti ◽  
Markus J. Buehler

Bone is mineralized tissue constituting the skeletal system, supporting and protecting body organs and tissues. In addition to such fundamental mechanical functions, bone also plays a remarkable role in sound...


1979 ◽  
Vol 254 (21) ◽  
pp. 10710-10714
Author(s):  
K.M. Meek ◽  
J.A. Chapman ◽  
R.A. Hardcastle

Nanoscale ◽  
2021 ◽  
Author(s):  
Weijian Fang ◽  
Hang Ping ◽  
Wolfgang Wagermaier ◽  
Shenbao Jin ◽  
Shahrouz Amini ◽  
...  

Collagen fibrils present periodic structures, which provide space for intrafibrillar growth of oriented hydroxyapatite nanocrystals in bone and contribute to the good mechanical properties of bone. However, there are not...


1990 ◽  
Vol 265 (15) ◽  
pp. 8823-8832 ◽  
Author(s):  
D Schuppan ◽  
M C Cantaluppi ◽  
J Becker ◽  
A Veit ◽  
T Bunte ◽  
...  

Author(s):  
Michel Haagdorens ◽  
Elle Edin ◽  
Per Fagerholm ◽  
Marc Groleau ◽  
Zvi Shtein ◽  
...  

Abstract Purpose To determine feasibility of plant-derived recombinant human collagen type I (RHCI) for use in corneal regenerative implants Methods RHCI was crosslinked with 1-ethyl-3-(3-dimethyl aminopropyl) carbodiimide (EDC) and N-hydroxysuccinimide (NHS) to form hydrogels. Application of shear force to liquid crystalline RHCI aligned the collagen fibrils. Both aligned and random hydrogels were evaluated for mechanical and optical properties, as well as in vitro biocompatibility. Further evaluation was performed in vivo by subcutaneous implantation in rats and corneal implantation in Göttingen minipigs. Results Spontaneous crosslinking of randomly aligned RHCI (rRHCI) formed robust, transparent hydrogels that were sufficient for implantation. Aligning the RHCI (aRHCI) resulted in thicker collagen fibrils forming an opaque hydrogel with insufficient transverse mechanical strength for surgical manipulation. rRHCI showed minimal inflammation when implanted subcutaneously in rats. The corneal implants in minipigs showed that rRHCI hydrogels promoted regeneration of corneal epithelium, stroma, and nerves; some myofibroblasts were seen in the regenerated neo-corneas. Conclusion Plant-derived RHCI was used to fabricate a hydrogel that is transparent, mechanically stable, and biocompatible when grafted as corneal implants in minipigs. Plant-derived collagen is determined to be a safe alternative to allografts, animal collagens, or yeast-derived recombinant human collagen for tissue engineering applications. The main advantage is that unlike donor corneas or yeast-produced collagen, the RHCI supply is potentially unlimited due to the high yields of this production method. Lay Summary A severe shortage of human-donor corneas for transplantation has led scientists to develop synthetic alternatives. Here, recombinant human collagen type I made of tobacco plants through genetic engineering was tested for use in making corneal implants. We made strong, transparent hydrogels that were tested by implanting subcutaneously in rats and in the corneas of minipigs. We showed that the plant collagen was biocompatible and was able to stably regenerate the corneas of minipigs comparable to yeast-produced recombinant collagen that we previously tested in clinical trials. The advantage of the plant collagen is that the supply is potentially limitless.


Sign in / Sign up

Export Citation Format

Share Document