Preparation of magnetic nanoparticles with large specific loss power for heating applications

2005 ◽  
Vol 289 ◽  
pp. 13-16 ◽  
Author(s):  
Robert Müller ◽  
Rudolf Hergt ◽  
Matthias Zeisberger ◽  
Wolfgang Gawalek
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yaser Hadadian ◽  
Ana Paula Ramos ◽  
Theo Z. Pavan

AbstractOptimizing the intrinsic properties of magnetic nanoparticles for magnetic hyperthermia is of considerable concern. In addition, the heating efficiency of the nanoparticles can be substantially influenced by dipolar interactions. Since adequate control of the intrinsic properties of magnetic nanoparticles is not straightforward, experimentally studying the complex interplay between these properties and dipolar interactions affecting the specific loss power can be challenging. Substituting zinc in magnetite structure is considered as an elegant approach to tune its properties. Here, we present experimental and numerical simulation results of magnetic hyperthermia studies using a series of zinc-substituted magnetite nanoparticles (ZnxFe1-xFe2O4, x = 0.0, 0.1, 0.2, 0.3 and 0.4). All experiments were conducted in linear regime and the results were inferred based on the numerical simulations conducted in the framework of the linear response theory. The results showed that depending on the nanoparticles intrinsic properties, interparticle interactions can have different effects on the specific loss power. When dipolar interactions were strong enough to affect the heating efficiency, the parameter σ = KeffV/kBT (Keff is the effective anisotropy and V the volume of the particles) determined the type of the effect. Finally, the sample x = 0.1 showed a superior performance with a relatively high intrinsic loss power 5.4 nHm2kg−1.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. A. M. Iglesias ◽  
J. C. R. de Araújo ◽  
J. Xavier ◽  
R. L. Anders ◽  
J. M. de Araújo ◽  
...  

AbstractWe investigate the magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process through the calorimetric method. Specifically, we propose a theoretical approach to magnetic hyperthermia from a thermodynamic point of view. To test the robustness of the approach, we perform hyperthermia experiments and analyse the thermal behavior of magnetite and magnesium ferrite magnetic nanoparticles dispersed in water submitted to an alternating magnetic field. From our findings, besides estimating the specific loss power value from a non-adiabatic and radiating process, thus enhancing the accuracy in the determination of this quantity, we provide physical meaning to a parameter found in literature that still remained not fully understood, the effective thermal conductance, and bring to light how it can be obtained from experiment. In addition, we show our approach brings a correction to the estimated experimental results for specific loss power and effective thermal conductance, thus demonstrating the importance of the heat loss rate due to the thermal radiation in magnetic hyperthermia.


Nanomaterials ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 40
Author(s):  
Costica Caizer

The cancer therapy with the lowest possible toxicity is today an issue that raises major difficulties in treating malignant tumors because chemo- and radiotherapy currently used in this field have a high degree of toxicity and in many cases are ineffective. Therefore, alternative solutions are rapidly being sought in cancer therapy, in order to increase efficacy and a reduce or even eliminate toxicity to the body. One of the alternative methods that researchers believe may be the method of the future in cancer therapy is superparamagnetic hyperthermia (SPMHT), because it can be effective in completely destroying tumors while maintaining low toxicity or even without toxicity on the healthy tissues. Superparamagnetic hyperthermia uses the natural thermal effect in the destruction of cancer cells, obtained as a result of the phenomenon of superparamagnetic relaxation of the magnetic nanoparticles (SPMNPs) introduced into the tumor; SPMNPs can heat the cancer cells to 42–43 °C under the action of an external alternating magnetic field with frequency in the range of hundreds of kHz. However, the effectiveness of this alternative method depends very much on finding the optimal conditions in which this method must be applied during the treatment of cancer. In addition to the type of magnetic nanoparticles and the biocompatibility with the biological tissue or nanoparticles biofunctionalization that must be appropriate for the intended purpose a key parameter is the size of the nanoparticles. Also, establishing the appropriate parameters for the external alternating magnetic field (AMF), respectively the amplitude and frequency of the magnetic field are very important in the efficiency and effectiveness of the magnetic hyperthermia method. This paper presents a 3D computational study on specific loss power (Ps) and heating temperature (ΔT) which allows establishing the optimal conditions that lead to efficient heating of Fe3O4 nanoparticles, which were found to be the most suitable for use in superparamagnetic hyperthermia (SPMHT), as a non-invasive and alternative technique to chemo- and radiotherapy. The size (diameter) of the nanoparticles (D), the amplitude of the magnetic field (H) and the frequency (f) of AMF were established in order to obtain maximum efficiency in SPMHT and rapid heating of magnetic nanoparticles at the required temperature of 42–43 °C for irreversible destruction of tumors, without affecting healthy tissues. Also, an analysis on the amplitude of the AMF is presented, and how its amplitude influences the power loss and, implicitly, the heating temperature, observables necessary in SPMHT for the efficient destruction of tumor cells. Following our 3D study, we found for Fe3O4 nanoparticles the optimal diameter of ~16 nm, the optimal range for the amplitude of the magnetic field of 10–25 kA/m and the optimal frequency within the biologically permissible limit in the range of 200–500 kHz. Under the optimal conditions determined for the nanoparticle diameter of 16.3 nm, the magnetic field of 15 kA/m and the frequency of 334 kHz, the magnetite nanoparticles can be quickly heated to obtain the maximum hyperthermic effect on the tumor cells: in only 4.1–4.3 s the temperature reaches 42–43 °C, required in magnetic hyperthermia, with major benefits in practical application in vitro and in vivo, and later in clinical trials.


2015 ◽  
Vol 230 ◽  
pp. 101-107
Author(s):  
Alexander I. Tovstolytkin ◽  
S.O. Solopan ◽  
V.M. Kalita ◽  
S.M. Ryabchenko ◽  
Anatolii G. Belous

Structural and magnetic characteristics of (La,Sr)MnO3 nanoparticles synthesized by different methods have been studied in the work. The specific loss power which is released on the exposure of an ensemble of synthesized particles to alternating magnetic field was calculated and measured experimentally. The contributions to the specific loss power resulted from different heating mechanisms have been discussed. The directions to enhance the heating efficiency of various kinds of magnetic nanoparticles are outlined


2018 ◽  
Vol 54 (1A) ◽  
pp. 33
Author(s):  
Luu Huu Nguyen

Magnetic nanoparticles absorb energy from external alternating magnetic field to create ananosized heating source. Specific loss power (SLP) is affected strongly by several magneticparameters of material and viscosity of nanofluid. In this study, the specific loss power asdependent on saturation magnetization was calculated for hard ferrite CoFe2O4 (K = 290 kJ/m3)and soft ferrite MnFe2O4 (K = 3 kJ/m3) with two values of viscosity in biological range 1-2 mPas.Besides, we investigated the experimental dependence SLP on their saturation magnetizationwhile changing viscosity using agar powder. A large change of slopesSLPMwas found for CFOwhen the viscosity changes; whereas it remained almost unaffected by the variation of viscosityfluid of MFO. All calculation and experimental results are discussed via the competitionbetween Néel and Brown relaxation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ji-wook Kim ◽  
Jie Wang ◽  
Hyungsub Kim ◽  
Seongtae Bae

AbstractMagnetic dipole coupling between the colloidal superparamagnetic nanoparticles (SPNPs) depending on the concentration has been paid significant attention due to its critical role in characterizing the Specific Loss Power (SLP) in magnetic nanofluid hyperthermia (MNFH). However, despite immense efforts, the physical mechanism of concentration-dependent SLP change behavior is still poorly understood and some contradictory results have been recently reported. Here, we first report that the SLP of SPNP MNFH agent shows strong concentration-dependent oscillation behavior. According to the experimentally and theoretically analyzed results, the energy competition among the magnetic dipole interaction energy, magnetic potential energy, and exchange energy, was revealed as the main physical reason for the oscillation behavior. Empirically demonstrated new finding and physically established model on the concentration-dependent SLP oscillation behavior is expected to provide biomedically crucial information in determining the critical dose of an agent for clinically safe and highly efficient MNFH in cancer clinics.


Sign in / Sign up

Export Citation Format

Share Document