heat loss rate
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
C. A. M. Iglesias ◽  
J. C. R. de Araújo ◽  
J. Xavier ◽  
R. L. Anders ◽  
J. M. de Araújo ◽  
...  

AbstractWe investigate the magnetic nanoparticles hyperthermia in a non-adiabatic and radiating process through the calorimetric method. Specifically, we propose a theoretical approach to magnetic hyperthermia from a thermodynamic point of view. To test the robustness of the approach, we perform hyperthermia experiments and analyse the thermal behavior of magnetite and magnesium ferrite magnetic nanoparticles dispersed in water submitted to an alternating magnetic field. From our findings, besides estimating the specific loss power value from a non-adiabatic and radiating process, thus enhancing the accuracy in the determination of this quantity, we provide physical meaning to a parameter found in literature that still remained not fully understood, the effective thermal conductance, and bring to light how it can be obtained from experiment. In addition, we show our approach brings a correction to the estimated experimental results for specific loss power and effective thermal conductance, thus demonstrating the importance of the heat loss rate due to the thermal radiation in magnetic hyperthermia.


2021 ◽  
pp. 1-27
Author(s):  
Kabbir Ali ◽  
Changup Kim ◽  
Yonggyu Lee ◽  
Seungmook Oh ◽  
Ki-Seong Kim

Abstract This study analyzes the combustion performance of a syngas-fueled homogenous charge compression ignition (HCCI) engine using a toroidal piston, square bowl, and flat piston shape, at low, medium, and high loads, with a constant compression ratio of 17.1. In this study, the square bowl shape is optimized by reducing the piston bowl depth and squish area ratio (squish area/cylinder cross-sectional area) from (34 to 20, 10, and 2.5) %, and compared with the flat piston shape and toroidal piston shape. This HCCI engine operates under an overly lean air–fuel mixture condition for power plant usage. ANSYS Forte CFD with GRI Mech3.0 chemical kinetics is used for combustion analysis, and the calculated results are validated by the experimental results. All simulations are accomplished at maximum brake torque (MBT) by altering the air–fuel mixture temperature at IVC with a constant equivalence ratio of 0.27. This study reveals that the main factors that affect the start of combustion , maximum pressure rise rate (MPRR), combustion efficiency, and thermal efficiency by changing the piston shape are the squish flow and reverse squish flow effects. Therefore, the square bowl piston D is the optimized piston shape that offers low MPRR and high combustion performance for the syngas-fueled HCCI engine, due to the weak squish flow and low heat loss rate through the combustion chamber wall, respectively, compared to the other piston shapes of square bowl piston A, B, and C, flat piston, and toroidal (baseline) piston shape.


2021 ◽  
Author(s):  
◽  
Liam Cotton

The key objective of the thesis was to quantify the heat loss caused to the liquid steel due to the cooling effect of the teeming ladle refractories. It was previously hypothesised that the in-situ degradation of insulation layer would increase this cooling effect. To determine the cooling effect of the degraded insulation material it was first thermally characterised with in-situ thermocouple measurements. Post-mortem samples were recovered from the teeming ladles used for the thermocouple measurements during their regular production cycles in a BOS plant. The post-mortem samples were then tested for their thermophysical properties. From this it was possible to determine the density increased from 260kg/m3 to 759.6 kg/m3, the thermal conductivity increased from 0.039W/m.K to 0.15W/m.K and the specific heat capacity decreased by 40% compared to its original state. These findings were then used to calculate the increased heat loss rate of the refractory material in the teeming ladle, which then in turn causes increased heat loss to the steel transported by the ladle. A thermal model was used to determine the heat flux stored in a fully saturated ladle and then different time periods of cooling with and without a lid. The effect of teeming ladle lids reduced the heat losses by up to 11°C per cycle compared to a ladle without a lid. Whereas the heat loss due to the insulative layer degradation was calculated to be <1°C for the initial heats before the ladle reached production temperatures and, therefore, had minimal effect. However, the degradation did show an increase in teeming ladle shell temperatures, which needs to be taken into account for service temperature monitoring. The thermal profiles of the modelled scenarios showed that if an accurate hot face measurement could be achieved it would be possible to accurately predict the cooling effect of each teeming ladle in production. This study was able to accurately measure the refractories and slag taken from a teeming and utilise the geometry of the ladle to reduce the error from thermal imaging. Previously predictions were used that could cause errors up to ±175°C when taking thermal images of the teeming ladle hot face. Through the method adopted in this study it was possible to take accurate measurements of the hot face within ±5°C. This can now be utilised by a thermal model to make accurate real time predictions of the heat loss caused by teeming ladle refractories. Thereby reducing the reheating required and improving the quality of steel produced.


Author(s):  
Ogunrinola Iyanuoluwa Enoch ◽  
Akinyemi Marvel Lola ◽  
Ndubuisi Amanda ◽  
Boyo Henry ◽  
Emetere Moses ◽  
...  

2020 ◽  
Vol 10 (18) ◽  
pp. 6289
Author(s):  
Chengjie Li ◽  
Bin Li ◽  
Junying Huang ◽  
Changyou Li

Energy consumption performance evaluation of an industrial grain dryer is an essential step to check its current status and to put forward suggestions for more effective operation. The present work proposed a combined IRCC dryer with drying capacity of 4.2 t/h that uses a novel drying technology. Moreover, the existing energy–exergy methodology was applied to evaluate the performance of the dryer on the basis of energy efficiency, heat loss characteristics, energy recovery, exergy flow and exegetic efficiency. The results demonstrated that the average drying rate of the present drying system was 1.1 gwater/gwet matter h. The energy efficiency of the whole drying system varied from 2.16% to 35.21% during the drying process. The overall recovered radiant energy and the average radiant exergy rate were 674,339.3 kJ and 3.54 kW, respectively. However, the average heat-loss rate of 3145.26 MJ/h indicated that measures should be put in place to improve its performance. Concerning the exergy aspect, the average exergy rate for dehydration was 462 kW and the exergy efficiency of the whole drying system ranged from 5.16% to 38.21%. Additionally, the exergy analysis of the components indicated that the combustion chamber should be primarily optimized among the whole drying system. The main conclusions of the present work may provide theoretical basis for the optimum design of the industrial drying process from the viewpoint of energetics.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1523 ◽  
Author(s):  
Miaomiao Shi ◽  
Yue Jing ◽  
Liuzhi Yang ◽  
Xianqing Huang ◽  
Hongwei Wang ◽  
...  

In this study, corn, potato, and wrinkled pea starches were esterified with malic acid under high temperatures for different lengths of time. The degree of substitution (DS), granule morphology, crystal structure, gelatinization properties, and the digestibility of the malate starch were investigated. Fourier transform infrared spectroscopy (FT–IR) suggested that the malate starch showed a new infrared absorption peak near 1747 cm−1, indicating the occurrence of an esterification reaction. With an increasing treatment time, the degree of substitution (DS) of the malate starch displayed an increasing trend. Scanning electron microscopy (SEM) demonstrated a significant change in the surface structure of the starch granules. X-ray diffractometry (XRD) reflected that the crystal structure of the malate starches was destroyed. The thermogravimetric (TG) curves showed that the maximum heat loss rate of the malate starch was ahead of that of native starch, which caused the decreased degree of crystallinity. These properties of malate starch could allow it to be used for the purpose of starch modification to produce resistant starch and to provide new applications for starch.


Materials ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 2766 ◽  
Author(s):  
Viet-Anh Vu ◽  
Alain Cloutier ◽  
Benoit Bissonnette ◽  
Pierre Blanchet ◽  
Josée Duchesne

The aim of this study was to consider the use of biomass wood ash as a partial replacement for cement material in wood-cement particleboards. Wood-cement-ash particleboards (WCAP) were made with 10%, 20%, 30%, 40%, and 50% of wood ash as a partial replacement for cement with wood particles and tested for bending strength, stiffness, water absorption, and thermal properties. Test results indicate that water demand increases as the ash content increases, and the mechanical properties decrease slightly with an increase of the ash content until 30% of replacement. On the other hand, the heat capacity increases with the wood ash content. The WCAP can contribute to reducing the heat loss rate of building walls given their relatively low thermal conductivity compared to gypsum boards. The replacement of cement to the extent of approximately 30% by weight was found to give the optimum results.


SPE Journal ◽  
2019 ◽  
Vol 24 (04) ◽  
pp. 1595-1612
Author(s):  
Zeinab Zargar ◽  
S. M. Farouq Ali

Summary In this paper, we introduce, for the first time, an analytical approach for evaluating the effect of confinement and well interference on the SAGD process and achieving a better understanding of the situation. In the well-confinement stage of SAGD, there is adjacent-chamber interference, the effective head of drainage decreases, and the heat-loss rate decreases or, in a conservative design, remains constant. Our objectives were to predict the oil-production rate, steam-injection rate, thermal efficiency, steam-chamber velocity, unsteady temperature profile, heat distribution, and the cumulative steam/oil ratio (CSOR). In this approach, heat transfer was coupled with fluid flow. The governing equations were Darcy's law, volumetric balance, and heat conduction—constitutive equations indicating the temperature dependence of some physical properties. Our model was developed on the basis of a moving-boundary problem. The predicted oil rate remained constant during the sideways-expansion phase, while the steam-injection rate had to be constantly increased. After a determined confinement time, the oil rate started to decline with time because the decreasing steam-chamber interface length was offset by a decreasing head. The unsteady temperature profiles from the model showed that lower temperatures were predicted ahead of the interface owing to the confinement effect. Also, the model showed that, for a small lateral well spacing, confinement occurred earlier and heat loss started decreasing sooner, resulting in a lower CSOR than for a large spacing. It was shown that, even though the oil rate declined faster in a confined model rather than in an unconfined model, the reservoir depleted faster, just like the angle between the steam-chamber interface and the horizon. The results were validated using experimental data reported in the literature.


2019 ◽  
Author(s):  
Andreas Nord ◽  
Lars P. Folkow

ABSTRACTStress-induced hyperthermia (SIH) is commonly observed during handling in homeotherms. However, in birds, handling in cold environments typically elicits hypothermia. It is unclear whether this indicates that SIH is differently regulated in this taxon or if it is due to size, because body temperatures changes during handling in low temperature have only been measured in small birds ≤ 0.03 kg (that are more likely to suffer high heat loss when handled). We have, therefore, studied thermal responses to handling stress in the intermediate-sized (0.5-1.0 kg) Svalbard ptarmigan (Lagopus muta hyperborea) in 0°C and −20°C, in winter and spring. Handling caused elevated core body temperature, and peripheral vasoconstriction that reduced back skin temperature. Core temperature increased less and back skin temperature decreased more in −20°C than in 0°C, probably because of higher heat loss rate at the lower temperature. Responses were qualitatively consistent between seasons, despite higher body condition/insulation in winter and dramatic seasonal changes in photoperiod, possibly affecting stress responsiveness. Our study supports the notion that SIH is a general thermoregulatory reaction to acute stressors in endotherms, but also suggests that body size and thermal environment should be taken into account when evaluating this response in birds.


2019 ◽  
Vol 36 (01) ◽  
pp. 55-61
Author(s):  
Jun Hwa Kwon ◽  
Jun Gu Kang ◽  
Young Hyun Kwon ◽  
Ha Nyoung Yoo ◽  
Young Jae Ko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document