scholarly journals Optimization of synthesis and peptization steps to obtain iron oxide nanoparticles with high energy dissipation rates

2015 ◽  
Vol 394 ◽  
pp. 361-371 ◽  
Author(s):  
Fernando Mérida ◽  
Andreina Chiu-Lam ◽  
Ana C. Bohórquez ◽  
Lorena Maldonado-Camargo ◽  
María-Eglée Pérez ◽  
...  
2008 ◽  
Vol 113 (C11) ◽  
Author(s):  
Tatsuki Tokoro ◽  
Hajime Kayanne ◽  
Atsushi Watanabe ◽  
Kazuo Nadaoka ◽  
Hitoshi Tamura ◽  
...  

2017 ◽  
Vol 268 ◽  
pp. 393-398
Author(s):  
Azdiya Suhada Abdul Rahim Arifin ◽  
Ismayadi Ismail ◽  
Abdul Halim Abdullah ◽  
Farah Nabilah Shafiee ◽  
Rodziah Nazlan ◽  
...  

In this work, iron oxide were derived from millscale has been used as a potential scavenging agent in wastewater treatment due to its high adsorption capacity and its shorter sedimentation time during wastewater treatment. Iron oxide obtained from the magnetic separation technique was subjected to high energy ball milling (HEBM) at different milling time to produce different size of nanoparticles of iron oxide. X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Scanning Trasmission Electron microscopy (STEM) were performed to study the morphological properties of the iron oxide nanoparticles. After HEBM, iron oxide nanoparticles was modified with Hexadecyltrimethylammonium Bromide (CTAB) to study the adsorption possibility of iron oxide nanoparticle modified with CTAB (Iron oxide– CTAB nanoparticles) in dye wastewater. The variation effect of particle size of derived Iron oxide– CTAB were studied. Permanent magnet was used to separate iron oxide nanoparticles from the solution. The clear part of the solution (treated wastewater) was filtered out and adsorption efficiency of Iron oxide– CTAB nanoparticles was measured using UV – Visible spectroscopy. Efficiency adsorption of iron oxide nanoparticles modified with CTAB greatly achieved above 99 % and the size of iron oxide nanoparticles affected its performance in dye wastewater treatment.


Author(s):  
Andrew Gill ◽  
Theodor W. von Backström ◽  
Thomas M. Harms

This study relates in general to accident scenarios in a closed cycle, nuclear powered, three-shaft, helium gas turbine, and in particular to finding explanations for the high energy dissipation rates at certain compressor operating modes on a four quadrant compressor map. A four quadrant compressor map allows the presentation of all combinations of positive and negative pressure rise and flow direction for positive or negative direction of rotation. The paper presents measured velocity profiles between blade rows, and computed particle path lines in blade passages. They reveal radially oriented vortices between the blades in a blade row when operating at low positive and negative flow rates. These vortices almost completely block the flow, and flow passing through the blade passage has to follow a helical path from casing to hub or vice versa around the vortex. The flow paths through these vortices are linked to the flow paths around circumferential ring vortices near the hub or near the casing in the blade free passages between blades rows. When operating as a turbine under high flow rates the vortices associated with negative incidence stall may be sheltered by the stator blade concave surfaces and deflect the flow in addition to blocking it. The vortex structures appear to be fundamental in nature as they were evident in three quadrants and in two different compressors. The vortices play a role in the high energy dissipation rates in axial flow compressors at very low flow rates, where they operate effectively as flow mixers and not as compressors in possible accident scenarios. They also explain the poor performance as turbine in the fourth quadrant.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


Sign in / Sign up

Export Citation Format

Share Document