Effect of skin pass rolling reduction rate on the texture evolution of a non-oriented electrical steel after inclined cold rolling

2017 ◽  
Vol 429 ◽  
pp. 148-160 ◽  
Author(s):  
Mehdi Mehdi ◽  
Youliang He ◽  
Erik J. Hilinski ◽  
Afsaneh Edrisy
2011 ◽  
Vol 298 ◽  
pp. 203-208 ◽  
Author(s):  
Zi Li Jin ◽  
Wei Li ◽  
Yi Ming Li

With the help of orientation distribution function (ODF) analysis, experiments of different hot band grain microstructure 0.33% silicon steel were cold-rolled and annealed in the laboratory,to study the effect of the microstructure hot-rolled steel strip for cold rolled non-oriented silicon steel microstructure and texture of recrystallization annealing. The results show that hot rolled microstructure on cold rolled Non-Oriented Electrical Steel cold-rolled sheet evolution of texture and recrystallization have important influence, the quiaxed grain structure of steel by cold rolling and recrystallization annealing, the recrystallization speed than the fiber grain-based mixed crystals recrystallization fast , With the equiaxed grains made of cold rolled silicon steel after annealing the {110}<UVW> texture components was enhanced and {100}<uwv> texture components weakened. Different microstructure condition prior to cold rolling in the recrystallization annealing process the texture evolution has the obvious difference, the equiaxial grain steel belt cold rolling and annealing, has the strong crystal orientation. This shows that the equiaxed grain when hot microstructure is detrimental to the magnetic properties of cold-rolled non-oriented silicon steel to improve and increase.


2007 ◽  
Vol 539-543 ◽  
pp. 3341-3346
Author(s):  
Yvan Houbaert ◽  
Tanya Ros-Yáñez ◽  
Pablo Rodriguez-Calvillo ◽  
José Barros ◽  
Leo Kestens

Crystallographic texture has an important effect on the magnetic quality of electrical steel: a specific texture parameter A is defined and used to estimate the magnetic quality of texture components. It is shown that obtaining the best possible texture in non oriented electrical steel can reduce the losses with 1,5 W/kg. Two production schemes for high silicon electrical steel are described: a conventional processing through hot and cold rolling with adequate temperatures and cooling rates and an immersion-diffusion process by hot dipping in a Si- and Al-rich bath followed by diffusion annealing. The texture evolution in these experimental materials is under study and first results are reported for conventional alloys (rolling procedure) and for immersion-diffusion alloys, which are annealed after dipping in order to obtain a controlled concentration gradient with high Si and/or Al at the surface or a homogeneous Si and/or Al-content over the thickness.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6822
Author(s):  
Xuefei Wei ◽  
Alexander Krämer ◽  
Gerhard Hirt ◽  
Anett Stöcker ◽  
Rudolf Kawalla ◽  
...  

The magnetic properties of non-oriented electrical steel, widely used in electric machines, are closely related to the grain size and texture of the material. How to control the evolution of grain size and texture through processing in order to improve the magnetic properties is the research focus of this article. Therefore, the complete process chain of a non-oriented electrical steel with 3.2 wt.-% Si was studied with regard to hot rolling, cold rolling, and final annealing on laboratory scale. Through a comprehensive analysis of the process chain, the influence of important process parameters on the grain size and texture evolution as well as the magnetic properties was determined. It was found that furnace cooling after the last hot rolling pass led to a fully recrystallized grain structure with the favorable ND-rotated-cube component, and a large portion of this component was retained in the thin strip after cold rolling, resulting in a texture with a low γ-fiber and a high ND-cube component after final annealing at moderate to high temperatures. These promising results on a laboratory scale can be regarded as an effective way to control the processing on an industrial scale, to finally tailor the magnetic properties of non-oriented electrical steel according to their final application.


Sign in / Sign up

Export Citation Format

Share Document