scholarly journals Surface growth in deformable solids using an Eulerian formulation

Author(s):  
Kiana Naghibzadeh ◽  
Noel Walkington ◽  
Kaushik Dayal
Author(s):  
Guy L. Bergel ◽  
Panayiotis Papadopoulos

AbstractThis work explores a continuum-mechanical model for a body simultaneously undergoing finite deformation and surface growth/resorption. This is accomplished by defining the kinematics as well as the set of material points that constitute the domain of a physical body at a given time in terms of an evolving reference configuration. The implications of spatial and temporal discretization are discussed, and an extension of the Arbitrary Lagrangian–Eulerian finite element method is proposed to enforce the resulting balance laws on the grown/resorbed body in two spatial dimensions. Representative numerical examples are presented to highlight the predictive capabilities of the model and the numerical properties of the proposed solution method.


1992 ◽  
Vol 26 (3-4) ◽  
pp. 595-600 ◽  
Author(s):  
S. M. Rao Bhamidimarri ◽  
T. T. See

Growth and shear loss characteristics of phenol utilizing biofilm were studied in a concentric cylinder bioreactor. The net accumulation of the biofilm and the substrate utilisation were measured as a function of torque. Uniform biofilms were obtained up to a thickness of around 300 microns, beyond which the surface growth was non-uniform. The substrate utilisation rate, however, reached a constant value beyond film thickness of 50 to 100 microns depending on the operational torque. The maximum phenol removal rate was achieved at a shear stress of 3.5 Nm-2. The effect of shear stress on net growth rate was found to be described byand a zero net growth was obtained at a shear stress of 18.7 Nm-2.


2021 ◽  
Vol 1715 ◽  
pp. 012029
Author(s):  
Sergey Golushko ◽  
Vasily Shapeev ◽  
Vasily Belyaev ◽  
Luka Bryndin ◽  
Artem Boltaev ◽  
...  

2021 ◽  
Author(s):  
Xiaoli Tian ◽  
Jianpeng Zong ◽  
Yusai Zhou ◽  
Dapeng Chen ◽  
Jia Jia ◽  
...  

We show that active surface growth is an effective method to create structural variety in the appending domain of Au seeds. The dynamic competition between the growth sites led to different Au hats on seeds.


2021 ◽  
Vol 88 (3) ◽  
Author(s):  
Alberto Prieto-Arranz ◽  
Luis Ramírez ◽  
Iván Couceiro ◽  
Ignasi Colominas ◽  
Xesús Nogueira

AbstractIn this work, a new discretization of the source term of the shallow water equations with non-flat bottom geometry is proposed to obtain a well-balanced scheme. A Smoothed Particle Hydrodynamics Arbitrary Lagrangian-Eulerian formulation based on Riemann solvers is presented to solve the SWE. Moving-Least Squares approximations are used to compute high-order reconstructions of the numerical fluxes and, stability is achieved using the a posteriori MOOD paradigm. Several benchmark 1D and 2D numerical problems are considered to test and validate the properties and behavior of the presented schemes.


Sign in / Sign up

Export Citation Format

Share Document