Shear Loss Characteristics of an Aerobic Biofilm

1992 ◽  
Vol 26 (3-4) ◽  
pp. 595-600 ◽  
Author(s):  
S. M. Rao Bhamidimarri ◽  
T. T. See

Growth and shear loss characteristics of phenol utilizing biofilm were studied in a concentric cylinder bioreactor. The net accumulation of the biofilm and the substrate utilisation were measured as a function of torque. Uniform biofilms were obtained up to a thickness of around 300 microns, beyond which the surface growth was non-uniform. The substrate utilisation rate, however, reached a constant value beyond film thickness of 50 to 100 microns depending on the operational torque. The maximum phenol removal rate was achieved at a shear stress of 3.5 Nm-2. The effect of shear stress on net growth rate was found to be described byand a zero net growth was obtained at a shear stress of 18.7 Nm-2.

1992 ◽  
Vol 26 (9-11) ◽  
pp. 2191-2194 ◽  
Author(s):  
M. Fujita ◽  
M. Ike ◽  
T. Kamiya

The metabolic pathway of the phenol degradation in Pseudomonasputida BH was amplified by introducing the recombinant plasmid containing catechol 2,3 oxygenase gene isolated fron the chromosome of BH. This strain could degrade phenol and grow much faster than the wild strain at the phenol concentration of 100mg/L. This strain seems to accelerate the phenol removal rate if it is applied to the treatment of wastewater containing phenol.


1994 ◽  
Vol 356 ◽  
Author(s):  
V. A. C. Haanappel ◽  
H. D. van Corbach ◽  
T. Fransen ◽  
P. J. Gellings

AbstractAmorphous alumina films were deposited by metal-organic chemical vapour deposition (MOCVD) on stainless steel, type AISI 304. The MOCVD experiments were performed in nitrogen at low pressure (0.17 kPa (1.25 torr)).The effect of deposition temperature (200 − 380 °C), growth rate, film thickness, and post-deposition thermal treatment on the mechanical properties was studied. The experiments were performed with a scanning-scratch tester. The experiments are based on the estimation of the film adhesion to the substrate by determining a critical load, Lc: the load where the film starts to spall or to delaminate.The best mechanical properties were obtained with unannealed samples. After thermal annealing the critical load decreases. Regarding the unannealed samples, the critical load increased with increasing film thickness. The deposition temperature and the growth rate had no effect on the critical load.


1995 ◽  
Vol 117 (2) ◽  
pp. 418-424 ◽  
Author(s):  
Q. Lu ◽  
N. V. Suryanarayana

Condensation of a vapor flow inside a horizontal rectangular duct, using the bottom plate as the only condensing surface, was experimentally investigated. The experimental measurements included condensate film thickness and heat transfer coefficients with R-113 and FC-72. The condensate film thickness, measured with an ultrasonic transducer, was used to obtain the local heat transfer coefficient. The heat transfer coefficient increased with increasing inlet vapor velocity. The rate of increase was enhanced noticeably after the appearance of interfacial waves. Within the limited range of the experimental variables, a correlation between St and RegL was developed by a linear regression analysis. However, because of the effect of the interfacial waves, instead of a single correlation for the entire range of RegL, two separate equations (one for the wave-free regime and another for the regime with waves) were found. Analytical predictions of heat transfer rates in the annular condensation regime require the proper modeling of the interfacial shear stress. A properly validated interfacial shear stress model with condensation is not yet available. The measurement of condensate film thickness at several axial locations opens the door for determining the local interfacial stress and, hence, a model for the interfacial shear stress.


1994 ◽  
Vol 116 (3) ◽  
pp. 612-620 ◽  
Author(s):  
Victoria Wikstro¨m ◽  
Erik Ho¨glund

When calculating film thickness and friction in elastohydrodynamically lubricated contacts, assuming a non-Newtonian fluid, the lubricant limiting shear stress is an essential parameter. It influences minimum film thickness and determines traction in the contact. The limiting shear stress is pressure dependent according to the Johnson and Tevaarwerk equation: τL=τ0+γp The limiting shear stress-pressure coefficient γ has in a previous screening investigation been shown to depend on several parameters: oil type, oil viscosity at + 40°C, maximum contact pressure and temperature. In the present investigation, the preliminary data is used together with response surface methodology. With these results in mind, further experiments are made and an empirical model is built. This paper presents a new model for γ which is valid for two types of oil (a polyalphaolefine with diester and a naphthenic oil) with different viscosities at +40°C. The model incorporates the influence of maximum contact pressure and oil temperature on γ. The measurements on which the model is based were carried out at temperatures ranging from −20 to + 110°C. The pressure range was 5.8–7 GPa and the shear rate was about 106 s−1.


1981 ◽  
Vol 21 (06) ◽  
pp. 679-686 ◽  
Author(s):  
W.H. Seitzer

Abstract In a concentric cylinder viscometer. Utah shale oils have different characteristics, both at equilibrium flow and during start-up from rest, depending on whether the wax has crystallized as needles or spherulites. Compared with waxy crude oils, which are thixotropic, shale oil had the added rheological property of being antithixotropic. Introduction The most likely liquid synthetic fuel to be produced initially in the U.S. will be raw shale oil from western oil shale. This abundant resource is located principally in the western Rocky Mountain states of Colorado. Utah. and Wyoming (Fig. 1). Ultimate commercial production probably will be transported to marketing, distribution, and refining centers by pipeline. It has been reported that Utah shale oils produced by the Union "B" and Paraho DH retorting processes gave similar physical and chemical properties. Some properties of the two Utah shale oils are given in Table 1. The only major difference is that the Union shale oil has a pour point of - 1 degree C compared with a pour point of 25 degrees C for the Paraho oil. Wax Crystallization The difference in the pour points of the oils from the Utah shale retorted by Union Oil Co of California and Paraho is caused mainly by the difference in how the wax in the respective oils crystallizes. In the high- pour-point (25 degrees C) Paraho DK oil, the wax, under a microscope, appears as fine (1 to 10 m) needles, as expected for normal paraffins. However, the wax in the low-pour-point (−1 degrees C) Union oil forms small spherulites.Wax spherulites have not been reported before: however, this type of crystal is seen commonly in polymer. Spherulites show up as round areas containing a maltese cross when observed between crossed polars under a microscope.Photomicrographs of these crystals are shown in Figs. 2 and 3. The former, showing spherulites, is of the Union oil. In contrast, they are very different from the customary needles as typified by the Paraho oil in the latter micrograph. Presumably, these highly ordered spheres are made up of wax needles grown out radially from the center as described by Hartshorne and Stuart. The polarized light is scattered only by those needles not parallel nor perpendicular to the plane of polarization. Viscometer Measurements To understand the effect of these spherulites on the flow characteristics of raw shale oil at flow conditions expected in a long-distance pipeline, typical stress-rate measurements were made in a rotating cylinder viscometer, the Haake Rotovisco RV3 with MK500 measuring head and MVI coaxial cylinder sensor having an 82-mm cup and radii ratio of 0.95. This equipment has provisions for varying shear rate continuously at selected values down to 23.4 sec(−1)/min and can produce and record shear stress as a function of either shear rate or time. Calibration of the sensor was verified with a sucrose/water solution at several temperatures.Changes in temperature always were made from lower to higher to keep the sensor full of oil. Also, the shear-stress/ shear-rate curves were obtained by starting at high shear, down to zero, and then back up. SPEJ P. 679^


1985 ◽  
Vol 31 (3) ◽  
pp. 256-260
Author(s):  
Peter R. Weldon ◽  
Patricia A. L. Kongshavn

Natural resistance to the growth of Leishmania donovani in mice is controlled by a gene (Lsh) which is expressed, in an unknown fashion, in macrophages. Early net growth rate of the parasite is much higher in mice strains bearing the susceptible allele (Lshs) than in resistant (Lshr) mice. Intracellular events occurring in the Kupffer cells during this period have been studied at the ultrastructural level. It was found that the number of dividing amastigotes per thin section of infected cell was approximately 10-fold greater in susceptible (B10.A SgSn) than in resistant (A/J) strains of mice, both 7 and 14 days following infection. These findings support the hypothesis that high natural resistance to leishmaniasis (Lshr) is expressed as a microbistatic effect, exerted within the parasitized macrophage of the host.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Elio Emilio Gonzo ◽  
Stefan Wuertz ◽  
Veronica B. Rajal

2015 ◽  
Vol 14 (2) ◽  
pp. 31 ◽  
Author(s):  
L. E. Silva ◽  
C. A. C. Santos ◽  
J. E. S. Ribeiro ◽  
C. C. Souza ◽  
A. M. S. Sant’Ana

Rheology attempts to define a relationship between the stress acting on a given material and the resulting deformation and/or flow that takes place. Thus, the knowledge of rheological properties of fluid materials such as vegetable oils generates auxiliary data that can be used in its storage and application. In this context, the aim of this study was to evaluate the rheological behavior of vegetable oils (cotton, canola, sunflower, corn and soybean) at different temperatures, using four rheological models (Ostwald- de-Waelle, Herschel-Bulkley, Newton and Bingham). The rheological properties were determined using a Thermo Haake rheometer with concentric cylinder geometry. Measurements were taken at 30, 45 and 60 °C by controlling the temperature using a thermostatic bath coupled to the equipment. The software Rheowin Pro Job Manager was used for process control and data record. The rheograms were obtained by measuring the values of shear stress varying the shear rate from 100 to 600 s-1 within 250 seconds. For the analysis of the apparent viscosity at different shear rates was applied simple linear regression until 2nd degree with the aid of SAS (SAS/Stat 9.2) program. The apparent viscosity data were submitted to analysis of variance and the averages were compared by Tukey test at 5% of probability. Higher temperatures of the samples were correlated to lower shear stress values, hence lower values for viscosity and consistency index were obtained, since it is known that the density and viscosity are highly sensitive to temperature and that the increase in temperature results in reduction of viscosity, benefiting the fluid flow. The models of Newton and Ostwald-de-Waelle were chosen to evaluate the rheological behavior of the samples, showing a good fit for the rheological data.


Sign in / Sign up

Export Citation Format

Share Document