scholarly journals Strain hardening analysis and modelling for sintered Al-Cu-TiC preforms with varying process parameters during cold upsetting

2020 ◽  
Vol 9 (5) ◽  
pp. 12007-12018
Author(s):  
A.K. Jeevanantham ◽  
Devi Rengamani Seenivasagam ◽  
Rajeshkannan Ananthanarayanan
2012 ◽  
Vol 538-541 ◽  
pp. 2759-2766
Author(s):  
Cai An Fu ◽  
Meng Tong ◽  
Xian Wang

Abstract.Now the largeness of circumferential belt and 2 poles in ball billet after cold upsetting process and the consequently low material utilization ratio increase the following process time and cause a great waste. In order to obtain low allowance of ball billet, high material utilization ratio and productivity, through the research of the cold upsetting process, evaluating indicator including plumpness, roundness, cold upsetting force and volume was established, orthogonal test was designed. By the Deform simulation analysis the optimum process parameters was obtained. The results show that the optimized cold upsetting force is reduced by 35%. So the optimized process parameters has a great application value.


2014 ◽  
Vol 911 ◽  
pp. 143-147
Author(s):  
A. Rajeshkannan ◽  
Alok Sharma ◽  
R.S. Devi

Strain hardening occurs as a result of extensive plastic deformation of a material at below recrystallization temperature. The powder metallurgy route subjects the elemental powders to highly plastic deformation under compaction; however it is softened while it is sintered. In order to enhance its mechanical behaviour, it is usually subjected to secondary deformation operation. In the present investigation the cold upsetting exercise is carried out in three different lubricants condition with two different preform geometries on sintered Fe-0.75%C. Unlike the conventional material under plastic deformation the matrix gets strain harden, in P/M material along with matrix the geometry supplements the strain hardening behaviour. The nature of matrix and geometric hardening behaviour has been dealt. In addition an empirical relationship and its corresponding parameters experimental values have been predicted which is of high importance in design of preforms and die-set for actual production.


2019 ◽  
Vol 8 (2) ◽  
pp. 1789-1797 ◽  
Author(s):  
Rajeshkannan Ananthanarayanan ◽  
Zoher Ahmed ◽  
Avneet Prasad ◽  
Sumesh Narayan

2007 ◽  
Vol 344 ◽  
pp. 235-241 ◽  
Author(s):  
Kari Mäntyjärvi ◽  
Markku Keskitalo ◽  
Jussi A. Karjalainen ◽  
Anu Leiviskä ◽  
Jouko Heikkala ◽  
...  

When sheets of high-strength (HS) and ultra-high-strength (UHS) steels are bent by a press brake the process suffers from large bending forces, considerable springback, and eventual cracks. Additionally, some unpredictable effects, such as lost contact to the punch, caused by strain hardening may occur producing a bend with erroneous radii. The strain hardening of the bending line may make further processes, such as forming or welding, more complex. One solution to these problems is to anneal the bending line with a laser in advance. Of course, it is also possible to utilise other types of heat sources, but the laser can offer the most precisely controlled heat treatment. The proper process parameters depend on the material, and it has been noticed that inadequate process parameters may harden the material instead of annealing. In this work some experiments on bending sheet metal samples of HS or UHS steel with previously laser-annealed bending lines have been carried out and the outcome analysed. The results show that the annealing produces better bending results compared to the conventional procedure. This includes lower springback, less hardening in the bending line and more precise geometry of the bend. It can be even suggested that proper annealing with strain hardening in bending will produce the original material structure. Obviously, more theoretical and experimental work is required to optimise the process parameters including the laser power and speed for each pair of material strength and thickness.


Author(s):  
Satyanarayana Kosaraju ◽  
Anil Kalluri ◽  
Swadesh Kumar Singh ◽  
Ahsan ul Haq

Abstract Austenitic Stainless-Steel grade 316L is one among the significant ASS grades which is most commonly used in various industry sectors. It has excellent corrosion resistance in ordinary atmospheric and also in more arduous environments such as salt water and environments where resistance to chloride corrosion is required. Whilst performing well when exposed to relatively high temperatures, this grade of Austenitic Stainless steel also maintains its strength and toughness at sub-zero temperatures, making this an excellent choice for various applications in industries sectors such as Marine, general construction, and water treatment. Therefore, present study focused on evaluating the mechanical properties such as ultimate tensile strength (UTS), yield strength (YS) and strain hardening exponent (n) are evaluated based on the experimental data obtained from the uniaxial isothermal tensile tests performed at an interval of −25 °C from 0 °C to −50 °C and at three orientations (0, 45, 90) degrees to the rolling direction and cross head velocity (3, 5, 7) mm/min were chosen. A total of 27 experiments have been planned based on design of experiments to conduct experiments. A mathematical model for the prediction of ultimate tensile strength (UTS), yield strength (YS) and strain hardening exponent (n) was developed using process parameters such as temperature, orientation and cross head velocities. Results have shown that mechanical properties can be predicted with a reasonable accuracy within the range of process parameters considered in this study.


2008 ◽  
Vol 07 (01) ◽  
pp. 131-135
Author(s):  
TUNG-SHENG YANG ◽  
RUEY-FANG SHYU

Deep drawing process is very useful in industrial field because of its efficiency. The earing of deep drawing process is affected by many material and process parameters, such as the strain-hardening exponent, anisotropic property of blank, blank holder force, the profile radius of die, etc. In this paper, the material anisotropy and process parameters effect on the earing are investigated.


2011 ◽  
Vol 308-310 ◽  
pp. 1054-1061
Author(s):  
Cai An Fu ◽  
Jun Jian Ye

Such evaluation standards as plumpness, roundness, force of cold upsetting, and the volume are made through the research on cold upsetting steel ball. Through a designed orthogonal test and the DEFORM simulation analysis, the process of ball billet is explained reasonably after primary selection and screening. Thus through comparison, it is seen that the original process is improved to a large degree.


2021 ◽  
Author(s):  
Ali Khalfallah ◽  
Pedro André Prates ◽  
José Valdemar Fernandes

Tube hydroforming (THF) is a plastic forming process that uses tubes with an initial circular cross section, in which pressurized fluid and axial feeds are applied for producing parts with various cross-sectional shapes. Despite of the complexity of THF process, a great progress in the automotive and aerospace industry has been made due to its advantages, such as, consolidation and weight reduction over conventional stamped and welded parts. The analysis of THF process is typically based on deterministic approaches, excluding scattering effects that influence the process reliability. Thus, robust design of tube hydroforming aims to vanish noise factors effects on process responses by considering the influence of process parameters variability. If this fluctuation is not monitored, then the fluctuation of the hydroformed parts quality may contribute to high scrap rates. In this work, the influence of variability in the THF material and process parameters (e.g. yield stress, strength coefficient, strain hardening exponent, plastic anisotropy, initial tube thickness and bulged length) on the bursting pressure is analyzed resorting to a response surface model. The statistically significant variables, which mostly influence the free bulge hydroforming process, are identified through an analysis of variance. Assuming that the input parameters variability follows the normal distribution, the probability distribution of the bursting pressure is evaluated by involving random process variables into the built response surface model. It was shown that the initial tube thickness is the most statistically significant variable, whereas the strain hardening exponent is the least statistically significant variable.


Sign in / Sign up

Export Citation Format

Share Document