Selective laser melting of near-α titanium alloy Ti-6Al-2Zr-1Mo-1V: Parameter optimization, heat treatment and mechanical performance

2020 ◽  
Vol 57 ◽  
pp. 51-64 ◽  
Author(s):  
Chao Cai ◽  
Xu Wu ◽  
Wan Liu ◽  
Wei Zhu ◽  
Hui Chen ◽  
...  
2017 ◽  
Vol 44 (9) ◽  
pp. 0902001
Author(s):  
肖振楠 Xiao Zhennan ◽  
刘婷婷 Liu Tingting ◽  
廖文和 Liao Wenhe ◽  
张长东 Zhang Changdong ◽  
杨涛 Yang Tao

Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 645 ◽  
Author(s):  
Sebastian Marian Zaharia ◽  
Lucia Antoneta Chicoș ◽  
Camil Lancea ◽  
Mihai Alin Pop

In this study, lightweight sandwich structures with honeycomb cores are proposed and their mechanical properties are investigated through experiments and FEA (finite element analysis) simulation. Sandwich structures were fabricated out of Inconel 718 using selective laser melting technique with two different topologies—sandwich structures with perforated skin (SSPS) and sandwich structures with perforated core (SSPC). In addition, the effect of the homogenization heat treatment on the mechanical properties of the sandwich samples subjected to compression and microhardness tests was analyzed. Results showed significant increases of mechanical performance before and after homogenization heat treatment of the Inconel 718 samples. Microstructure analysis was performed to compare the microstructures before and after homogenization heat treatment for Inconel 718 alloys manufactured by selective laser melting (SLM). The accuracy of experimental data were evaluated by modeling of sandwich samples in Ansys software at the end of this study.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1318 ◽  
Author(s):  
Zhan-Yong Zhao ◽  
Liang Li ◽  
Pei-Kang Bai ◽  
Yang Jin ◽  
Li-Yun Wu ◽  
...  

In this research, the effect of several heat treatments on the microstructure and microhardness of TC4 (Ti6Al4V) titanium alloy processed by selective laser melting (SLM) is studied. The results showed that the original acicular martensite α′-phase in the TC4 alloy formed by SLM is converted into a lamellar mixture of α + β for heat treatment temperatures below the critical temperature (T0 at approximately 893 °C). With the increase of heat treatment temperature, the size of the lamellar mixture structure inside of the TC4 part gradually grows. When the heat treatment temperature is above T0, because the cooling rate is relatively steep, the β-phase recrystallization transforms into a compact secondary α-phase, and a basketweave structure can be found because the primary α-phase develop and connect or cross each other with different orientations. The residence time for TC4 SLM parts when the treatment temperature is below the critical temperature has little influence: both the α-phase and the β-phase will tend to coarsen but hinder each other, thereby limiting grain growth. The microhardness gradually decreases with increasing temperature when the TC4 SLM part is treated below the critical temperature. Conversely, the microhardness increases significantly with increasing temperature when the TC4 SLM part is treated above the critical temperature.


2020 ◽  
Vol 10 (7) ◽  
pp. 2280 ◽  
Author(s):  
Filippo Nalli ◽  
Luana Bottini ◽  
Alberto Boschetto ◽  
Luca Cortese ◽  
Francesco Veniali

Additive manufacturing is now capable of delivering high-quality, complex-shaped metallic components. The titanium alloy Ti6Al4V is an example of a printable metal being broadly used for advanced structural applications. A sound characterization of static mechanical properties of additively manufactured material is crucial for its proper application, and here specifically for Ti6Al4V. This includes a complete understanding of the influence of postprocess treatment on the material behavior, which has not been reached yet. In the present paper, the postprocess effects of surface finish and heat treatment on the mechanical performance of Ti6Al4V after selective laser melting were investigated. Some samples were subjected to barrel finishing at two different intensities, while different sets of specimens underwent several thermal cycles. As a reference, a control group of specimens was included, which did not undergo any postprocessing. The treatments were selected to be effective and easy to perform, being suitable for real industrial applications. Tensile tests were performed on all the samples, to obtain yield stress, ultimate tensile strength and elongation at fracture. The area reduction of the barrel-finished samples, after being tested, was measured by using a 3D scanner, as a further indication of ductility. Experimental results are reported and discussed, highlighting the effect of postprocessing treatments on the mechanical response. We then propose the optimal postprocessing procedure to enhance ductility without compromising strength, for structures manufactured from Ti6Al4V with selective laser melting.


2020 ◽  
Vol 32 (4) ◽  
pp. 042001
Author(s):  
Le Wan ◽  
Zhixin Xia ◽  
Ying Song ◽  
Xiaowei Zhang ◽  
Fan Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document