Effect of work hardening discrepancy on strengthening of laminated Cu/CuZn alloys

2022 ◽  
Vol 103 ◽  
pp. 67-72
Author(s):  
Zheng Cao ◽  
Zhao Cheng ◽  
Wei Xu ◽  
Lei Lu
Keyword(s):  
Alloy Digest ◽  
2002 ◽  
Vol 51 (1) ◽  

Abstract Allegheny Ludlum Type 305 (S30500) stainless steel is used for applications requiring a low rate of work hardening during severe cold-forming operations such as deep drawing. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as heat treating and joining. Filing Code: SS-840. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1966 ◽  
Vol 15 (3) ◽  

Abstract Joslyn Stainless Type-305H is a modified austenitic chromium-nickel steel recommended for severe cold heading applications because of its low work-hardening factor. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-178. Producer or source: Joslyn Stainless Steels.


Alloy Digest ◽  
1978 ◽  
Vol 27 (12) ◽  

Abstract USS Dual Phase 80 is a high-strength steel sheet which has a dual phase structure of martensite and ferrite. It provides all the benefits of higher strength with little sacrifice in ductility, formability or weldability. Dual Phase 80 gains strength as it is formed through rapid work hardening of its unique microstructure; in fact, it increases from its delivered yield strength of 50,000 psi up to 80,000 psi (or more) in forming. Its final strength depends on the amount of forming. Its many applications include automotive vehicles, farm equipment and heavy construction equipment. This datasheet provides information on composition, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-352. Producer or source: United States Steel Corporation.


Alloy Digest ◽  
1962 ◽  
Vol 11 (11) ◽  

Abstract Armco 18-9LW is a low-work-hardening stainless steel developed for severe cold heading, swaging and other cold forming applications. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-138. Producer or source: Armco Inc., Eastern Steel Division.


2020 ◽  
pp. 252-255
Author(s):  
V.I. Bolobov ◽  
V.S. Bochkov ◽  
E.V. Akhmerov ◽  
V.A. Plashchinsky ◽  
E.A. Krivokrisenko E.A.

On the example of Hadfield steel, as the most common material of fast-wearing parts of mining equipment, the effect of surface hardening by plastic deformation on their impact and abrasive wear resistance is considered. Wear test is conducted on magnetic ironstone as typical representative of abrasive and hard rock. As result of wear of initial samples with hardness of ∼200 HB and samples pre-hardened with different intensities to the hardness of 300, 337 and 368 HB, it is found that during the initial testing period, the initial samples pass the “self-cold-work hardening” stage with increase in hardness to ∼250 HB, which remains virtually unchanged during further tests; the hardness of the pre-hardened samples does not change significantly throughout the tests. It is established that the rate of impact-abrasive wear of pre-hardened samples is significantly (up to 1.4 times) lower than the original ones that are not subjected to plastic deformation, and decreases with increasing degree of cold-work hardening. Preliminary surface hardening by plastic deformation can serve as effective way to increase the service life of fast-wearing working parts of mining equipment.


2007 ◽  
Vol 345-346 ◽  
pp. 45-48 ◽  
Author(s):  
Jozef Zrník ◽  
Sergey V. Dobatkin ◽  
Ondrej Stejskal

The article focuses on the results from recent experimental of severe plastic deformation of low carbon (LC) steel and medium carbon (MC) steel performed at increased temperatures. The grain refinement of ferrite respectively ferrite-pearlite structure is described. While LC steel was deformed by ECAP die (ε = 3) with a channel angle φ = 90° the ECAP severe deformation of MC steel was conducted with die channel angle of 120° (ε = 2.6 - 4). The high straining in LC steel resulted in extensively elongated ferrite grains with dense dislocation network and randomly recovered and polygonized structure was observed. The small period of work hardening appeared at tensile deformation. On the other side, the warm ECAP deformation of MC steel in dependence of increased effective strain resulted in more progressive recovery process. In interior of the elongated ferrite grains the subgrain structure prevails with dislocation network. As straining increases the dynamic polygonization and recrystallization became active to form mixture of polygonized subgrain and submicrocrystalline structure. The straining and moderate ECAP temperature caused the cementite lamellae fragmentation and spheroidzation as number of passes increased. The tensile behaviour of the both steels was characterized by strength increase however the absence of strain hardening was found at low carbon steel. The favourable effect of ferrite-pearlite structure modification due straining was reason for extended work hardening period observed at MC steel.


2021 ◽  
Vol 175 ◽  
pp. 111067
Author(s):  
J.P. Goulmy ◽  
E. Rouhaud ◽  
P. Kanoute ◽  
L. Toualbi ◽  
S. Kruch ◽  
...  

Author(s):  
S. Sivasankaran ◽  
K. R. Ramkumar ◽  
Hany R. Ammar ◽  
Fahad A. Al-Mufadi ◽  
Abdulaziz S. Alaboodi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document