Deformation Behaviour and Ultrafine Grained Structure Development in Steels with Different Carbon Content Subjected to Severe Plastic Deformation

2007 ◽  
Vol 345-346 ◽  
pp. 45-48 ◽  
Author(s):  
Jozef Zrník ◽  
Sergey V. Dobatkin ◽  
Ondrej Stejskal

The article focuses on the results from recent experimental of severe plastic deformation of low carbon (LC) steel and medium carbon (MC) steel performed at increased temperatures. The grain refinement of ferrite respectively ferrite-pearlite structure is described. While LC steel was deformed by ECAP die (ε = 3) with a channel angle φ = 90° the ECAP severe deformation of MC steel was conducted with die channel angle of 120° (ε = 2.6 - 4). The high straining in LC steel resulted in extensively elongated ferrite grains with dense dislocation network and randomly recovered and polygonized structure was observed. The small period of work hardening appeared at tensile deformation. On the other side, the warm ECAP deformation of MC steel in dependence of increased effective strain resulted in more progressive recovery process. In interior of the elongated ferrite grains the subgrain structure prevails with dislocation network. As straining increases the dynamic polygonization and recrystallization became active to form mixture of polygonized subgrain and submicrocrystalline structure. The straining and moderate ECAP temperature caused the cementite lamellae fragmentation and spheroidzation as number of passes increased. The tensile behaviour of the both steels was characterized by strength increase however the absence of strain hardening was found at low carbon steel. The favourable effect of ferrite-pearlite structure modification due straining was reason for extended work hardening period observed at MC steel.

2003 ◽  
Vol 355 (1-2) ◽  
pp. 180-185 ◽  
Author(s):  
M. Richert ◽  
H.P. Stüwe ◽  
M.J. Zehetbauer ◽  
J. Richert ◽  
R. Pippan ◽  
...  

2006 ◽  
Vol 503-504 ◽  
pp. 995-1000
Author(s):  
Viktor Varyukhin ◽  
B. Efros ◽  
V. Ivchenko ◽  
N. Efros ◽  
E. Popova

It has been revealed that in Iridium influenced be severe plastic deformation (SPD) a ultrafine grained (UFG) structure is formed (the grain size of 20-30 nm), but in the bodies of grains there are practically no defects of structure, however, after irradiation a subgrain structure, (subgrain size of 3-5 nm) is formed, and in the bodies of subgrains there are defects. The subgrain structure was also revealed in UFG Nickel and Copper after SPD (subgrain size of 3-15 nm), but in the latter case the observed boundary region is broader and subgrain are highly disoriented.


2010 ◽  
Vol 667-669 ◽  
pp. 205-210 ◽  
Author(s):  
W. Pantleon

Plastic deformation creates orientation differences in grains of originally uniform orientation. These disorientations are caused by a local excess of dislocations having the same sign of the Burgers vector. Their increase with increasing plastic strain is modeled by dislocation dynamics taking into account different storage mechanisms. The predicted average disorientation angles across different types of boundaries are in close agreement with experimental data for small and moderate plastic strains. At large plastic strains after severe plastic deformation, saturation of the measured average disorientation angle is observed. This saturation is explained as an immediate consequence of the restriction of experimentally measured disorientation angles to angles below a certain maximum value imposed by crystalline symmetry. Taking into account the restrictions from crystalline symmetry for modeled disorientation angles does not only lead to an excellent agreement with experimental findings on Ni after high pressure torsion, but also rationalizes the work-hardening behavior at large plastic strains as well as a saturation of the flow stress.


2010 ◽  
Vol 12 (10) ◽  
pp. 1077-1081 ◽  
Author(s):  
P. Gobernado ◽  
R. Petrov ◽  
D. Ruiz ◽  
E. Leunis ◽  
Leo A. I. Kestens

2017 ◽  
Vol 743 ◽  
pp. 187-190 ◽  
Author(s):  
Evgeny N. Moskvichev ◽  
Vladimir V. Skripnyak ◽  
Dmitry V. Lychagin ◽  
Vladimir A. Krasnoveikin

In this article, the effect of a severe plastic deformation (SPD) achieved by groove pressing (GP) on the grain structure and mechanical properties of a rolled sheet Al-Mg alloy was investigated. The study of the microstructure of the samples before and after processing was carried out by means of electron backscattered diffraction (EBSD). The mechanical properties of the samples were experimentally studied under uniaxial tension in quasi-static conditions, and microhardness testing was implemented. It was found that the conventional yield strength and ultimate tensile strength increase by the factor of 1.4 and 1.5, respectively; and the microhardness increases by approximately 2.7 times after four machining sequences of the rolled sheet alloy. A bimodal grain structure, consisting of two grain types with particular features, is formed in the samples after four machining sequences of GP.


2010 ◽  
Vol 667-669 ◽  
pp. 1009-1014 ◽  
Author(s):  
Farzad Khodabakhshi ◽  
Mohsen Kazeminezhad ◽  
Mohammad Azarnush ◽  
Seyyed Hossein Miran

There are many works on annealing process of SPDed bulk metals but there are limited works on annealing process of SPDed sheets. Therefore, in this study the annealing response after constrained groove pressing (CGP) of low carbon steel sheets has been investigated. These sheets are subjected to severe plastic deformation at room temperature by CGP method up to three passes. Nano-structured low carbon steel sheets produced by severe plastic deformation are annealed at temperature range of 100 to 600 °C for 20 min. The microstructural changes after deformation and annealing are studied by optical microscopy. The effects of CGP strain and annealing temperature on microstructure, strength and hardness evolutions of the nano-scale grained low carbon steel are examined. The results show that annealing phenomena can effectively improve the elongation of process sheets with preserving the hardness and mechanical strength. Also, a thermal stability of microstructure can be observed with annealing at a temperature range of 375–425 °C and 400 °C is achieved as an optimum annealing temperature. Microstructure after post-annealing at temperatures of higher than 600 °C shows abnormal grain growth.


2018 ◽  
Vol 941 ◽  
pp. 1173-1177
Author(s):  
Yuto Suzuki ◽  
Yuichi Shiono ◽  
Taiki Morishige ◽  
Toshihide Takenaka

Severe Plastic Deformation (SPD) process is one of methods for obtaining UFG-Al. It was reported in SPD-processed Al alloy that the extra-hardening due to work hardening caused by accumulated dislocation in the grains. In Al-Mg alloy, Mg decreases the stacking fault energy in this alloy, and dislocation tends to accumulate in the grains. In this study, Al-Mg alloy with various Mg contents were processed by Equal-Channel Angular Pressed (ECAP) which was one of SPD and annealed after processed ECAP. The relationship between Mg content and magnitude of extra-hardening was investigated. In ECAPed Al-3mass%Mg alloy, it was thought that extra-hardening was caused. Magnitude of extra-hardening was increased with increasing Mg content.


Sign in / Sign up

Export Citation Format

Share Document