Performance based user-centric dynamic mode switching and mobility management scheme for 5G networks

2018 ◽  
Vol 116 ◽  
pp. 24-34 ◽  
Author(s):  
Sanjay Kumar Biswash ◽  
Dushantha Nalin K. Jayakody
2018 ◽  
Vol 1 (6) ◽  
pp. e55 ◽  
Author(s):  
Sanjay K. Biswash ◽  
Dushantha N.K. Jayakody

2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Abhishek Majumder ◽  
Sudipta Roy

Seamless mobility management of the mesh clients (MCs) in wireless mesh network (WMN) has drawn a lot of attention from the research community. A number of mobility management schemes such as mesh network with mobility management (MEMO), mesh mobility management (M3), and wireless mesh mobility management (WMM) have been proposed. The common problem with these schemes is that they impose uniform criteria on all the MCs for sending route update message irrespective of their distinct characteristics. This paper proposes a session-to-mobility ratio (SMR) based dynamic mobility management scheme for handling both internet and intranet traffic. To reduce the total communication cost, this scheme considers each MC’s session and mobility characteristics by dynamically determining optimal threshold SMR value for each MC. A numerical analysis of the proposed scheme has been carried out. Comparison with other schemes shows that the proposed scheme outperforms MEMO,M3, and WMM with respect to total cost.


Author(s):  
László Bokor ◽  
Zoltán Faigl ◽  
Sándor Imre

This paper is committed to give an overview of the Host Identity Protocol (HIP), to introduce the basic ideas and the main paradigms behind it, and to make an exhaustive survey of mobility management schemes in the Host Identity Layer. The authors' goal is to show how HIP emerges from the list of potential alternatives with its wild range of possible usability, complex feature set and power to create a novel framework for future Mobile Internet architectures. In order to achieve this, the authors also perform an extensive simulation evaluation of four selected mobility solutions in the Host Identity Layer: the standard HIP mobility/multihoming (RFC5206), a micromobility solution (µHIP), a network mobility management scheme (HIP-NEMO) and a proactive, cross-layer optimized, distributed proposal designed for flat architectures (UFA-HIP).


Sign in / Sign up

Export Citation Format

Share Document