scholarly journals Control protocol for robust in vitro glial scar formation around microwires: Essential roles of bFGF and serum in gliosis

2009 ◽  
Vol 181 (2) ◽  
pp. 170-177 ◽  
Author(s):  
Vadim S. Polikov ◽  
Eric C. Su ◽  
Matthew A. Ball ◽  
Jau-Shyong Hong ◽  
William M. Reichert
2021 ◽  
Author(s):  
Catalina Vallejo Giraldo ◽  
Ouidir Ouidja Mohand ◽  
Minh Bao Huynh ◽  
Alexandre Trotier ◽  
Katarzyna Krukiewicz ◽  
...  

Further in the search for biomimicry of the properties analogous to neural tissues, and with an ultimate goal of mitigating electrode deterioration via reactive host cell response and glial scar formation, the bio-functionalisation of PEDOT:PTS neural coating is here presented using a heparan mimetic termed (HM) F6. A sulphated mimetic polyanion, with a potential role in neuromodulation in neurodegenerative diseases, and used here for the first time as neural coating. This work acts as a first step towards the use of HM biological dopants, to enhance neuroelectrode functionality, to promote neural outgrowth and to maintain minimal glial scar formation in vitro at the neural-interface. Further, this study opens new possibilities for the evaluation of glycan mimetics in neuroelectrode functionalisation.


Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Huiling Zhang ◽  
Zhong-Sheng Li ◽  
Yong Ni ◽  
Xian-Yong Zhou ◽  
Shi-Gang Qiao

During the recovery phase of ischemic stroke, one of the major barriers for the spontaneous neuronal axon regeneration is the formation of astrogliosis and glial scar, and targeting astrogliosis becomes a therapeutic strategy for ischemic stroke. However, the mechanism regulating the process of scar components after ischemia still remains poorly understood. The aim of this study was to observe the role of RIP1 kinase (RIP1K), the key regulator of necroptosis (programmed necrosis) in the brain functional recovery after ischemic stroke and in the ischemic stroke-induced astrogliosis and glial scar formation in both in vitro and in vivo glial scar models. The glial scar formation model in vitro or in vivo was established by using primary cultured astrocyte subjected to 6 hours of oxygen-glucose deprivation (OGD) following 12 hours or 24 hours reperfusion, or by 90 min of transient middle cerebral artery occlusion (tMCAO) and reperfusion in rats. Western blotting analysis and immunohistochemical assay showed that knockdown of RIP1K by lentivirally-delivered shRNAs against RIP1K (shRNA RIP1K) could decrease several protein levels of glial scar markers such as glial fibillary acidic protein (GFAP), neurocan and phosphacan both in in vitro and in vivo glial scar models. Furthermore, western blotting analysis showed that knockdown of RIP1K reduced the protein levels of VEGF-D receptor 3 in in vitro glial scar models. In addition, knockdown of RIP1K also notably reduced the shrinking volume and ameliorated the behavioral symptoms in the recovery phase of rats after tMCAO. And immunocytochemistry assay demonstrated that RIP1K knockdown promoted the neuronal axonal generation in a neuron and astrocyte co-culture system. Our data indicates that RIP1K might play an important role in the formation of glial scar after ischemic stroke via promoting the function of VEGF-D receptor 3 in astrocytes.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dunja Bijelić ◽  
Marija Adžić ◽  
Mina Perić ◽  
Igor Jakovčevski ◽  
Eckart Förster ◽  
...  

Extracellular matrix glycoprotein tenascin-C (TnC) is highly expressed in vertebrates during embryonic development and thereafter transiently in tissue niches undergoing extensive remodeling during regeneration after injury. TnC’s different functions can be attributed to its multimodular structure represented by distinct domains and alternatively spliced isoforms. Upon central nervous system injury, TnC is upregulated and secreted into the extracellular matrix mainly by astrocytes. The goal of the present study was to elucidate the role of different TnC domains in events that take place after spinal cord injury (SCI). Astrocyte cultures prepared from TnC-deficient (TnC-/-) and wild-type (TnC+/+) mice were scratched and treated with different recombinantly generated TnC fragments. Gap closure, cell proliferation and expression of GFAP and cytokines were determined in these cultures. Gap closure in vitro was found to be delayed by TnC fragments, an effect mainly mediated by decreasing proliferation of astrocytes. The most potent effects were observed with fragments FnD, FnA and their combination. TnC-/- astrocyte cultures exhibited higher GFAP protein and mRNA expression levels, regardless of the type of fragment used for treatment. Application of TnC fragments induced also pro-inflammatory cytokine production by astrocytes in vitro. In vivo, however, the addition of FnD or Fn(D+A) led to a difference between the two genotypes, with higher levels of GFAP expression in TnC+/+ mice. FnD treatment of injured TnC-/- mice increased the density of activated microglia/macrophages in the injury region, while overall cell proliferation in the injury site was not affected. We suggest that altogether these results may explain how the reaction of astrocytes is delayed while their localization is restricted to the border of the injury site to allow microglia/macrophages to form a lesion core during the first stages of glial scar formation, as mediated by TnC and, in particular, the alternatively spliced FnD domain.


2012 ◽  
Vol 32 (8) ◽  
pp. 1567-1577 ◽  
Author(s):  
Yi Bao ◽  
Luye Qin ◽  
Eunhee Kim ◽  
Sangram Bhosle ◽  
Hengchang Guo ◽  
...  

Inflammation is an essential component for glial scar formation. However, the upstream mediator(s) that triggers the process has not been identified. Previously, we showed that the expression of CD36, an inflammatory mediator, occurs in a subset of astcotyes in the peri-infarct area where the glial scar forms. This study investigates a role for CD36 in astrocyte activation and glial scar formation in stroke. We observed that the expression of CD36 and glial fibrillary acidic protein (GFAP) coincided in control and injured astrocytes and in the brain. Furthermore, GFAP expression was attenuated in CD36 small interfering RNA transfected astrocytes or in the brain of CD36 knockout (KO) mice, suggesting its involvement in GFAP expression. Using an in-vitro model of wound healing, we found that CD36 deficiency attenuated the proliferation of astrocytes and delayed closure of the wound gap. Furthermore, stroke-induced GFAP expression and scar formation were significantly attenuated in the CD36 KO mice compared with wild type. These findings identify CD36 as a novel mediator for injury-induced astrogliosis and scar formation. Targeting CD36 may serve as a potential strategy to reduce glial scar formation in stroke.


2017 ◽  
Vol 1655 ◽  
pp. 90-103 ◽  
Author(s):  
Jichao Yuan ◽  
Wei Liu ◽  
Haitao Zhu ◽  
Yaxing Chen ◽  
Xuan Zhang ◽  
...  
Keyword(s):  

2017 ◽  
Vol 216 (8) ◽  
pp. 2533-2550 ◽  
Author(s):  
Francois Renault-Mihara ◽  
Masahiko Mukaino ◽  
Munehisa Shinozaki ◽  
Hiromi Kumamaru ◽  
Satoshi Kawase ◽  
...  

Understanding how the transcription factor signal transducer and activator of transcription–3 (STAT3) controls glial scar formation may have important clinical implications. We show that astrocytic STAT3 is associated with greater amounts of secreted MMP2, a crucial protease in scar formation. Moreover, we report that STAT3 inhibits the small GTPase RhoA and thereby controls actomyosin tonus, adhesion turnover, and migration of reactive astrocytes, as well as corralling of leukocytes in vitro. The inhibition of RhoA by STAT3 involves ezrin, the phosphorylation of which is reduced in STAT3-CKO astrocytes. Reduction of phosphatase and tensin homologue (PTEN) levels in STAT3-CKO rescues reactive astrocytes dynamics in vitro. By specific targeting of lesion-proximal, reactive astrocytes in Nestin-Cre mice, we show that reduction of PTEN rescues glial scar formation in Nestin-Stat3+/− mice. These findings reveal novel intracellular signaling mechanisms underlying the contribution of reactive astrocyte dynamics to glial scar formation.


2019 ◽  
Vol 69 (2) ◽  
pp. 324-332 ◽  
Author(s):  
Gongyu Song ◽  
Rui Yang ◽  
Qian Zhang ◽  
Long Chen ◽  
Dujuan Huang ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yan Hu ◽  
Guoyou Huang ◽  
Jin Tian ◽  
Jinbin Qiu ◽  
Yuanbo Jia ◽  
...  

AbstractInjury to the central nervous system (CNS) usually leads to the activation of astrocytes, followed by glial scar formation. The formation of glial scars from active astrocytes in vivo has been found to be dependent on the cell microenvironment. However, how astrocytes respond to different microenvironmental cues during scar formation, such as changes in matrix stiffness, remains elusive. In this work, we established an in vitro model to assess the responses of astrocytes to matrix stiffness changes that may be related to pathophysiology. The investigated hydrogel backbones are composed of collagen type I and alginate. The stiffness of these hybrid hydrogels can be dynamically changed by association or dissociation of alginate chains through adding crosslinkers of calcium chloride or a decrosslinker of sodium citrate, respectively. We found that astrocytes obtain different phenotypes when cultured in hydrogels of different stiffnesses. The obtained phenotypes can be switched in situ when changing matrix stiffness in the presence of cells. Specifically, matrix stiffening reverts astrogliosis, whereas matrix softening initiates astrocytic activation in 3D. Moreover, the effect of matrix stiffness on astrocytic activation is mediated by Yes-associated protein (YAP), where YAP inhibition enhances the upregulation of GFAP and contributes to astrogliosis. To investigate the underlying mechanism of matrix stiffness-dependent GFAP expression, we also developed a mathematical model to describe the time-dependent dynamics of biomolecules involved in the matrix stiffness mechanotransduction process of astrocytes. The modeling results further indicate that the effect of matrix stiffness on cell fate and behavior may be related to changes in the cytoskeleton and subsequent activity of YAP. The results from this study will guide researchers to re-examine the role of matrix stiffness in reactive astrogliosis in vivo and inspire the development of a novel therapeutic approach for controlling glial scar formation following injury, enabling axonal regrowth and improving functional recovery by exploiting the benefits of mechanobiology studies.


Author(s):  
Yong-Ming Zhu ◽  
Liang Lin ◽  
Chao Wei ◽  
Yi Guo ◽  
Yuan Qin ◽  
...  

AbstractNecroptosis initiation relies on the receptor-interacting protein 1 kinase (RIP1K). We recently reported that genetic and pharmacological inhibition of RIP1K produces protection against ischemic stroke-induced astrocytic injury. However, the role of RIP1K in ischemic stroke-induced formation of astrogliosis and glial scar remains unknown. Here, in a transient middle cerebral artery occlusion (tMCAO) rat model and an oxygen and glucose deprivation and reoxygenation (OGD/Re)-induced astrocytic injury model, we show that RIP1K was significantly elevated in the reactive astrocytes. Knockdown of RIP1K or delayed administration of RIP1K inhibitor Nec-1 down-regulated the glial scar markers, improved ischemic stroke-induced necrotic morphology and neurologic deficits, and reduced the volume of brain atrophy. Moreover, knockdown of RIP1K attenuated astrocytic cell death and proliferation and promoted neuronal axonal generation in a neuron and astrocyte co-culture system. Both vascular endothelial growth factor D (VEGF-D) and its receptor VEGFR-3 were elevated in the reactive astrocytes; simultaneously, VEGF-D was increased in the medium of astrocytes exposed to OGD/Re. Knockdown of RIP1K down-regulated VEGF-D gene and protein levels in the reactive astrocytes. Treatment with 400 ng/ml recombinant VEGF-D induced the formation of glial scar; conversely, the inhibitor of VEGFR-3 suppressed OGD/Re-induced glial scar formation. RIP3K and MLKL may be involved in glial scar formation. Taken together, these results suggest that RIP1K participates in the formation of astrogliosis and glial scar via impairment of normal astrocyte responses and enhancing the astrocytic VEGF-D/VEGFR-3 signaling pathways. Inhibition of RIP1K promotes the brain functional recovery partially via suppressing the formation of astrogliosis and glial scar. Graphical Abstract


Sign in / Sign up

Export Citation Format

Share Document