Curcumin inhibits glial scar formation by suppressing astrocyte-induced inflammation and fibrosis in vitro and in vivo

2017 ◽  
Vol 1655 ◽  
pp. 90-103 ◽  
Author(s):  
Jichao Yuan ◽  
Wei Liu ◽  
Haitao Zhu ◽  
Yaxing Chen ◽  
Xuan Zhang ◽  
...  
Keyword(s):  
Stroke ◽  
2017 ◽  
Vol 48 (suppl_1) ◽  
Author(s):  
Huiling Zhang ◽  
Zhong-Sheng Li ◽  
Yong Ni ◽  
Xian-Yong Zhou ◽  
Shi-Gang Qiao

During the recovery phase of ischemic stroke, one of the major barriers for the spontaneous neuronal axon regeneration is the formation of astrogliosis and glial scar, and targeting astrogliosis becomes a therapeutic strategy for ischemic stroke. However, the mechanism regulating the process of scar components after ischemia still remains poorly understood. The aim of this study was to observe the role of RIP1 kinase (RIP1K), the key regulator of necroptosis (programmed necrosis) in the brain functional recovery after ischemic stroke and in the ischemic stroke-induced astrogliosis and glial scar formation in both in vitro and in vivo glial scar models. The glial scar formation model in vitro or in vivo was established by using primary cultured astrocyte subjected to 6 hours of oxygen-glucose deprivation (OGD) following 12 hours or 24 hours reperfusion, or by 90 min of transient middle cerebral artery occlusion (tMCAO) and reperfusion in rats. Western blotting analysis and immunohistochemical assay showed that knockdown of RIP1K by lentivirally-delivered shRNAs against RIP1K (shRNA RIP1K) could decrease several protein levels of glial scar markers such as glial fibillary acidic protein (GFAP), neurocan and phosphacan both in in vitro and in vivo glial scar models. Furthermore, western blotting analysis showed that knockdown of RIP1K reduced the protein levels of VEGF-D receptor 3 in in vitro glial scar models. In addition, knockdown of RIP1K also notably reduced the shrinking volume and ameliorated the behavioral symptoms in the recovery phase of rats after tMCAO. And immunocytochemistry assay demonstrated that RIP1K knockdown promoted the neuronal axonal generation in a neuron and astrocyte co-culture system. Our data indicates that RIP1K might play an important role in the formation of glial scar after ischemic stroke via promoting the function of VEGF-D receptor 3 in astrocytes.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Yan Hu ◽  
Guoyou Huang ◽  
Jin Tian ◽  
Jinbin Qiu ◽  
Yuanbo Jia ◽  
...  

AbstractInjury to the central nervous system (CNS) usually leads to the activation of astrocytes, followed by glial scar formation. The formation of glial scars from active astrocytes in vivo has been found to be dependent on the cell microenvironment. However, how astrocytes respond to different microenvironmental cues during scar formation, such as changes in matrix stiffness, remains elusive. In this work, we established an in vitro model to assess the responses of astrocytes to matrix stiffness changes that may be related to pathophysiology. The investigated hydrogel backbones are composed of collagen type I and alginate. The stiffness of these hybrid hydrogels can be dynamically changed by association or dissociation of alginate chains through adding crosslinkers of calcium chloride or a decrosslinker of sodium citrate, respectively. We found that astrocytes obtain different phenotypes when cultured in hydrogels of different stiffnesses. The obtained phenotypes can be switched in situ when changing matrix stiffness in the presence of cells. Specifically, matrix stiffening reverts astrogliosis, whereas matrix softening initiates astrocytic activation in 3D. Moreover, the effect of matrix stiffness on astrocytic activation is mediated by Yes-associated protein (YAP), where YAP inhibition enhances the upregulation of GFAP and contributes to astrogliosis. To investigate the underlying mechanism of matrix stiffness-dependent GFAP expression, we also developed a mathematical model to describe the time-dependent dynamics of biomolecules involved in the matrix stiffness mechanotransduction process of astrocytes. The modeling results further indicate that the effect of matrix stiffness on cell fate and behavior may be related to changes in the cytoskeleton and subsequent activity of YAP. The results from this study will guide researchers to re-examine the role of matrix stiffness in reactive astrogliosis in vivo and inspire the development of a novel therapeutic approach for controlling glial scar formation following injury, enabling axonal regrowth and improving functional recovery by exploiting the benefits of mechanobiology studies.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2245
Author(s):  
Jue-Zong Yeh ◽  
Ding-Han Wang ◽  
Juin-Hong Cherng ◽  
Yi-Wen Wang ◽  
Gang-Yi Fan ◽  
...  

In spinal cord injury (SCI) therapy, glial scarring formed by activated astrocytes is a primary problem that needs to be solved to enhance axonal regeneration. In this study, we developed and used a collagen scaffold for glial scar replacement to create an appropriate environment in an SCI rat model and determined whether neural plasticity can be manipulated using this approach. We used four experimental groups, as follows: SCI-collagen scaffold, SCI control, normal spinal cord-collagen scaffold, and normal control. The collagen scaffold showed excellent in vitro and in vivo biocompatibility. Immunofluorescence staining revealed increased expression of neurofilament and fibronectin and reduced expression of glial fibrillary acidic protein and anti-chondroitin sulfate in the collagen scaffold-treated SCI rats at 1 and 4 weeks post-implantation compared with that in untreated SCI control. This indicates that the collagen scaffold implantation promoted neuronal survival and axonal growth within the injured site and prevented glial scar formation by controlling astrocyte production for their normal functioning. Our study highlights the feasibility of using the collagen scaffold in SCI repair. The collagen scaffold was found to exert beneficial effects on neuronal activity and may help in manipulating synaptic plasticity, implying its great potential for clinical application in SCI.


2018 ◽  
Vol 205 (5-6) ◽  
pp. 372-395 ◽  
Author(s):  
Jonathan M. Zuidema ◽  
Ryan J. Gilbert ◽  
Manoj K. Gottipati

Over several decades, biomaterial scientists have developed materials to spur axonal regeneration and limit secondary injury and tested these materials within preclinical animal models. Rarely, though, are astrocytes examined comprehensively when biomaterials are placed into the injury site. Astrocytes support neuronal function in the central nervous system. Following an injury, astrocytes undergo reactive gliosis and create a glial scar. The astrocytic glial scar forms a dense barrier which restricts the extension of regenerating axons through the injury site. However, there are several beneficial effects of the glial scar, including helping to reform the blood-brain barrier, limiting the extent of secondary injury, and supporting the health of regenerating axons near the injury site. This review provides a brief introduction to the role of astrocytes in the spinal cord, discusses astrocyte phenotypic changes that occur following injury, and highlights studies that explored astrocyte changes in response to biomaterials tested within in vitro or in vivo environments. Overall, we suggest that in order to improve biomaterial designs for spinal cord injury applications, investigators should more thoroughly consider the astrocyte response to such designs.


2021 ◽  
Author(s):  
Catalina Vallejo Giraldo ◽  
Ouidir Ouidja Mohand ◽  
Minh Bao Huynh ◽  
Alexandre Trotier ◽  
Katarzyna Krukiewicz ◽  
...  

Further in the search for biomimicry of the properties analogous to neural tissues, and with an ultimate goal of mitigating electrode deterioration via reactive host cell response and glial scar formation, the bio-functionalisation of PEDOT:PTS neural coating is here presented using a heparan mimetic termed (HM) F6. A sulphated mimetic polyanion, with a potential role in neuromodulation in neurodegenerative diseases, and used here for the first time as neural coating. This work acts as a first step towards the use of HM biological dopants, to enhance neuroelectrode functionality, to promote neural outgrowth and to maintain minimal glial scar formation in vitro at the neural-interface. Further, this study opens new possibilities for the evaluation of glycan mimetics in neuroelectrode functionalisation.


2020 ◽  
Vol 11 ◽  
pp. 204173142094933 ◽  
Author(s):  
Hye Sung Kim ◽  
Junyu Chen ◽  
Lin-Ping Wu ◽  
Jihua Wu ◽  
Hua Xiang ◽  
...  

To reduce excessive scarring in wound healing, electrospun nanofibrous meshes, composed of haloarchaea-produced biodegradable elastomer poly(3-hydroxybutyrate- co-3-hydroxyvalerate) (PHBV), are fabricated for use as a wound dressing. Three PHBV polymers with different 3HV content are used to prepare either solution-cast films or electrospun nanofibrous meshes. As 3HV content increases, the crystallinity decreases and the scaffolds become more elastic. The nanofibrous meshes exhibit greater elasticity and elongation at break than films. When used to culture human dermal fibroblasts in vitro, PHBV meshes give better cell attachment and proliferation, less differentiation to myofibroblasts, and less substrate contraction. In a full-thickness mouse wound model, treatment with films or meshes enables regeneration of pale thin tissues without scabs, dehydration, or tubercular scar formation. The epidermis of wounds treated with meshes develop small invaginations in the dermis within 2 weeks, indicating hair follicle and sweat gland regeneration. Consistent with the in vitro results, meshes reduce myofibroblast differentiation in vivo through downregulation of α-SMA and TGF-β1, and upregulation of TGF-β3. The regenerated wounds treated with meshes are softer and more elastic than those treated with films. These results demonstrate that electrospun nanofibrous PHBV meshes mitigate excessive scar formation by regulating myofibroblast formation, showing their promise for use as wound dressings.


2021 ◽  
Vol 11 ◽  
Author(s):  
Dunja Bijelić ◽  
Marija Adžić ◽  
Mina Perić ◽  
Igor Jakovčevski ◽  
Eckart Förster ◽  
...  

Extracellular matrix glycoprotein tenascin-C (TnC) is highly expressed in vertebrates during embryonic development and thereafter transiently in tissue niches undergoing extensive remodeling during regeneration after injury. TnC’s different functions can be attributed to its multimodular structure represented by distinct domains and alternatively spliced isoforms. Upon central nervous system injury, TnC is upregulated and secreted into the extracellular matrix mainly by astrocytes. The goal of the present study was to elucidate the role of different TnC domains in events that take place after spinal cord injury (SCI). Astrocyte cultures prepared from TnC-deficient (TnC-/-) and wild-type (TnC+/+) mice were scratched and treated with different recombinantly generated TnC fragments. Gap closure, cell proliferation and expression of GFAP and cytokines were determined in these cultures. Gap closure in vitro was found to be delayed by TnC fragments, an effect mainly mediated by decreasing proliferation of astrocytes. The most potent effects were observed with fragments FnD, FnA and their combination. TnC-/- astrocyte cultures exhibited higher GFAP protein and mRNA expression levels, regardless of the type of fragment used for treatment. Application of TnC fragments induced also pro-inflammatory cytokine production by astrocytes in vitro. In vivo, however, the addition of FnD or Fn(D+A) led to a difference between the two genotypes, with higher levels of GFAP expression in TnC+/+ mice. FnD treatment of injured TnC-/- mice increased the density of activated microglia/macrophages in the injury region, while overall cell proliferation in the injury site was not affected. We suggest that altogether these results may explain how the reaction of astrocytes is delayed while their localization is restricted to the border of the injury site to allow microglia/macrophages to form a lesion core during the first stages of glial scar formation, as mediated by TnC and, in particular, the alternatively spliced FnD domain.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Shingo Yoshizaki ◽  
Tetsuya Tamaru ◽  
Masamitsu Hara ◽  
Ken Kijima ◽  
Masatake Tanaka ◽  
...  

Abstract Background After spinal cord injury (SCI), glial scarring is mainly formed around the lesion and inhibits axon regeneration. Recently, we reported that anti-β1 integrin antibody (β1Ab) had a therapeutic effect on astrocytes by preventing the induction of glial scar formation. However, the cellular components within the glial scar are not only astrocytes but also microglia, and whether or not β1Ab treatment has any influence on microglia within the glial scar remains unclear. Methods To evaluate the effects of β1Ab treatment on microglia within the glial scar after SCI, we applied thoracic contusion SCI to C57BL/6N mice, administered β1Ab in the sub-acute phase, and analyzed the injured spinal cords with immunohistochemistry in the chronic phase. To examine the gene expression in microglia and glial scars, we selectively collected microglia with fluorescence-activated cell sorting and isolated the glial scars using laser-captured microdissection (LMD). To examine the interaction between microglia and astrocytes within the glial scar, we stimulated BV-2 microglia with conditioned medium of reactive astrocytes (RACM) in vitro, and the gene expression of TNFα (pro-inflammatory M1 marker) was analyzed via quantitative polymerase chain reaction. We also isolated both naïve astrocytes (NAs) and reactive astrocytes (RAs) with LMD and examined their expression of the ligands for β1 integrin receptors. Statistical analyses were performed using Wilcoxon’s rank-sum test. Results After performing β1Ab treatment, the microglia were scattered within the glial scar and the expression of TNFα in both the microglia and the glial scar were significantly suppressed after SCI. This in vivo alteration was attributed to fibronectin, a ligand of β1 integrin receptors. Furthermore, the microglial expression of TNFα was shown to be regulated by RACM as well as fibronectin in vitro. We also confirmed that fibronectin was secreted by RAs both in vitro and in vivo. These results highlighted the interaction mediated by fibronectin between RAs and microglia within the glial scar. Conclusion Microglial inflammation was enhanced by RAs via the fibronectin/β1 integrin pathway within the glial scar after SCI. Our results suggested that β1Ab administration had therapeutic potential for ameliorating both glial scar formation and persistent neuroinflammation in the chronic phase after SCI.


Sign in / Sign up

Export Citation Format

Share Document