Simulation of the transient flow in a natural gas compression system using a high-order upwind scheme considering the real-gas behaviors

2016 ◽  
Vol 28 ◽  
pp. 479-490 ◽  
Author(s):  
Lei Zhang
Author(s):  
Matt Taher

ASME PTC-10 [2009] recognizes inaccuracies involved in using the generalized charts to calculate Schultz compressibility factors for real gas compression. However, it neither addresses a method to develop the compressibility factors, nor does it specify when to use calculated compressibility factors rather than using generalized values. Using inaccurate generalized values for Schultz compressibility factors may lead to erroneous calculation of polytropic exponents and polytropic work. This paper employs the LKP equation of state to directly calculate Schultz compressibility factors for a mixture of hydrocarbons typically found in natural gas. The results are compared with the values of compressibility factors from the generalized compressibility charts.


Author(s):  
R. Bettocchi ◽  
M. Pinelli ◽  
P. R. Spina ◽  
M. Venturini ◽  
S. Sebastianelli

This paper illustrates the policy and objectives in compression system maintenance and describes a system for the health state determination of natural gas compression gas turbines based on “Gas Path Analysis”. Some results of the application of the diagnostic system to gas turbines working in a natural gas compression plant are presented.


1979 ◽  
Vol 40 (C7) ◽  
pp. C7-677-C7-678
Author(s):  
S. W. Temko ◽  
K. W. Temko ◽  
S. K. Kuzmin
Keyword(s):  
Real Gas ◽  

Author(s):  
Corrado Guarinolobianco ◽  
Marco Faroni ◽  
Manuel Beschi ◽  
Antonio Visioli

Author(s):  
Swati Saxena ◽  
Ramakrishna Mallina ◽  
Francisco Moraga ◽  
Douglas Hofer

This paper is presented in two parts. Part I (Tabular fluid properties for real gas analysis) describes an approach to creating a tabular representation of the equation of state that is applicable to any fluid. This approach is applied to generating an accurate and robust tabular representation of the RefProp CO2 properties. Part II (this paper) presents numerical simulations of a low flow coefficient supercritical CO2 centrifugal compressor developed for a closed loop power cycle. The real gas tables presented in part I are used in these simulations. Three operating conditions are simulated near the CO2 critical point: normal day (85 bar, 35C), hot day (105 bar, 50 C) and cold day (70 bar, 20C) conditions. The compressor is a single stage overhung design with shrouded impeller, 155 mm impeller tip diameter and a vaneless diffuser. An axial variable inlet guide vane (IGV) is used to control the incoming swirl into the impeller. An in-house three-dimensional computational fluid dynamics (CFD) solver named TACOMA is used with real gas tables for the steady flow simulations. The equilibrium thermodynamic modeling is used in this study. The real gas effects are important in the desired impeller operating range. It is observed that both the operating range (minimum and maximum volumetric flow rate) and the pressure ratio across the impeller are dependent on the inlet conditions. The compressor has nearly 25% higher operating range on a hot day as compared to the normal day conditions. A condensation region is observed near the impeller leading edge which grows as the compressor operating point moves towards choke. The impeller chokes near the mid-chord due to lower speed of sound in the liquid-vapor region resulting in a sharp drop near the choke side of the speedline. This behavior is explained by analyzing the 3D flow field within the impeller and thermodynamic quantities along the streamline. The 3D flow analysis for the flow near the critical point provides useful insight for the designers to modify the current compressor design for higher efficiency.


Author(s):  
Saeid Mokhatab ◽  
William A. Poe ◽  
John Y. Mak
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document