Effects of cyclic cryogenic treatment on rock physical and mechanical properties of Eagle Ford shale samples - An experimental study

Author(s):  
Faisal Altawati ◽  
Hossein Emadi
2010 ◽  
Vol 168-170 ◽  
pp. 916-919
Author(s):  
Ke Fei Liu

Epoxy asphalt has fundamentally changed the thermoplastic of asphalt and endowed the asphalt with excellent physical and mechanical properties. This paper analyses the developing technical requirement of thermosetting epoxy asphalt and points out its main problems during preparation and application process. Aiming at the steel deck paving characteristics, the author has independently developed epoxy asphalt binder and tested its performances, the results have showed that this binder can meet the basic requirement of various pavings, and its further research are in process.


2021 ◽  
Author(s):  
John J. Degenhardt ◽  
◽  
Safdar Ali ◽  
Mansoor Ali ◽  
Brian Chin ◽  
...  

Many unconventional reservoirs exhibit a high level of vertical heterogeneity in terms of petrophysical and geo-mechanical properties. These properties often change on the scale of centimeters across rock types or bedding, and thus cannot be accurately measured by low-resolution petrophysical logs. Nonetheless, the distribution of these properties within a flow unit can significantly impact targeting, stimulation and production. In unconventional resource plays such as the Austin Chalk and Eagle Ford shale in south Texas, ash layers are the primary source of vertical heterogeneity throughout the reservoir. The ash layers tend to vary considerably in distribution, thickness and composition, but generally have the potential to significantly impact the economic recovery of hydrocarbons by closure of hydraulic fracture conduits via viscous creep and pinch-off. The identification and characterization of ash layers can be a time-consuming process that leads to wide variations in the interpretations that are made with regard to their presence and potential impact. We seek to use machine learning (ML) techniques to facilitate rapid and more consistent identification of ash layers and other pertinent geologic lithofacies. This paper involves high-resolution laboratory measurements of geophysical properties over whole core and analysis of such data using machine-learning techniques to build novel high-resolution facies models that can be used to make statistically meaningful predictions of facies characteristics in proximally remote wells where core or other physical is not available. Multiple core wells in the Austin Chalk/Eagle Ford shale play in Dimmitt County, Texas, USA were evaluated. Drill core was scanned at high sample rates (1 mm to 1 inch) using specialized equipment to acquire continuous high resolution petrophysical logs and the general modeling workflow involved pre-processing of high frequency sample rate data and classification training using feature selection and hyperparameter estimation. Evaluation of the resulting training classifiers using Receiver Operating Characteristics (ROC) determined that the blind test ROC result for ash layers was lower than those of the better constrained carbonate and high organic mudstone/wackestone data sets. From this it can be concluded that additional consideration must be given to the set of variables that govern the petrophysical and mechanical properties of ash layers prior to developing it as a classifier. Variability among ash layers is controlled by geologic factors that essentially change their compositional makeup, and consequently, their fundamental rock properties. As such, some proportion of them are likely to be misidentified as high clay mudstone/wackestone classifiers. Further refinement of such ash layer compositional variables is expected to improve ROC results for ash layers significantly.


2019 ◽  
Vol 40 (8) ◽  
pp. 3140-3148
Author(s):  
Xuelong Fu ◽  
Zhengbo Ji ◽  
Wei Lin ◽  
Wei Liu ◽  
Yuebin Lin ◽  
...  

2010 ◽  
Vol 168-170 ◽  
pp. 1426-1431
Author(s):  
Zhi Qing Li ◽  
Zhen Dong Cui ◽  
Yan Ping Wang ◽  
Li Chao Wang ◽  
Duo Zhong

According to the typical loess in Shuozhou in Shanxi province, tests involved in compaction characteristics, shearing strength characteristics and disintegration are carried out by using loess and three kinds of improved loess, namely lime and fly-ash, lime and cement, cement and fly-ash. The best improved soil method is selected. The test results indicate that the compact hybrid structure is formed by fly ash and loess. The activity of fly ash is activated as a result of the lime mixing. A series of hydration reaction prompt the intensity of modified loess. And the physical and mechanical properties of improved loess are improved noticeably.


Sign in / Sign up

Export Citation Format

Share Document