Numerical evaluation on the effect of horizontal-well systems on the long-term gas hydrate production behavior at the second Shenhu test site

Author(s):  
Tao Yu ◽  
Guoqing Guan ◽  
Dayong Wang ◽  
Yongchen Song ◽  
Abuliti Abudula
2014 ◽  
Vol 1665 ◽  
pp. 85-91 ◽  
Author(s):  
Josep M. Soler ◽  
Jiri Landa ◽  
Vaclava Havlova ◽  
Yukio Tachi ◽  
Takanori Ebina ◽  
...  

ABSTRACTMatrix diffusion is a key process for radionuclide retention in crystalline rocks. Within the LTD project (Long-Term Diffusion), an in-situ diffusion experiment in unaltered non-fractured granite was performed at the Grimsel Test Site (www.grimsel.com, Switzerland). The tracers included 3H as HTO, 22Na+, 134Cs+ and 131I- with stable I- as carrier.The dataset (except for 131I- because of complete decay) was analyzed with different diffusion-sorption models by different teams (NAGRA / IDAEA-CSIC, UJV-Rez, JAEA, Univ. Poitiers) using different codes, with the goal of obtaining effective diffusion coefficients (De) and porosity (ϕ) or rock capacity (α) values. A Borehole Disturbed Zone (BDZ), which was observed in the rock profile data for 22Na+ and 134Cs+, had to be taken into account to fit the experimental observations. The extension of the BDZ (1-2 mm) was about the same magnitude as the mean grain size of the quartz and feldspar grains.De and α values for the different tracers in the BDZ are larger than the respective values in the bulk rock. Capacity factors in the bulk rock are largest for Cs+ (strong sorption) and smallest for 3H (no sorption). However, 3H seems to display large α values in the BDZ. This phenomenon will be investigated in more detail in a second test starting in 2013.


2003 ◽  
Vol 119 (10,11) ◽  
pp. 625-634 ◽  
Author(s):  
Norio TENMA ◽  
Tsutomu YAMAGUCHI ◽  
Tsuneo KIKUCHI ◽  
Kazuhiko TEZUKA ◽  
George ZYVOLOSKI
Keyword(s):  

2009 ◽  
Vol 1193 ◽  
Author(s):  
Andrew James Martin ◽  
Ingo Blechschmidt

AbstractTwo recent ongoing major projects at the Grimsel Test Site (GTS) (www.grimsel.com) that were initiated to simulate the long-term behaviour of radionuclides in the repository near-field and the surrounding host rock are presented: the Colloid Formation and Migration (CFM) project, which focuses on colloid generation and migration from a bentonite source doped with radionuclides and the Long-Term Diffusion (LTD) project, which aims at in-situ verification and understanding of the processes that control the long-term diffusion of repository-relevant radionuclides. So far, the CFM project has principally involved: development and implementation of a state-of-the-art sealing concept to control hydraulic gradients in a shear zone to imitate repository-relevant conditions; extensive laboratory studies to examine bentonite erosion and colloid formation in a shear zone; and, development of models to estimate colloid formation and migration. The next stage will be to assess the behavior of bentonite colloids generated from a radionuclide spiked bentonite source-term emplaced into the controlled flow field of the shear zone. This will be coupled with further extensive laboratory studies in order to refine and evaluate the colloid models currently used in performance assessments. The LTD project consists of: a monopole diffusion experiment where weakly sorbing and non-sorbing radionuclides (3H, 22Na, 131I, 134Cs) have been circulating and diffusing into undisturbed rock matrix since June 2007; experiments to characterise pore space geometry, including determination of in-situ porosity with 14C doped MMA resin for comparison with laboratory derived data; a study of natural tracers to elucidate evidence of long-term diffusion processes; and, an investigation of the in-situ matrix diffusion paths in core material from earlier GTS experiments. Future experiments will focus on diffusion processes starting from a water-conducting feature under realistic boundary conditions.


SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 563-578 ◽  
Author(s):  
Yilong Yuan ◽  
Tianfu Xu ◽  
Yingli Xia ◽  
Xin Xin

Summary Marine-gas-hydrate-drilling exploration at the Eastern Nankai Trough of Japan revealed the variable distribution of hydrate accumulations, which are composed of alternating beds of sand, silt, and clay in sediments, with vertically varying porosity, permeability, and hydrate saturation. The main purposes of this work are to evaluate gas productivity and identify the multiphase-flow behavior from the sedimentary-complex hydrate reservoir by depressurization through a conventional vertical well. We first established a history-matching model by incorporating the available geological data at the offshore-production test site in the Eastern Nankai Trough. The reservoir model was validated by matching the fluid-flow rates at a production well and temperature changes at a monitoring well during a field test. The modeling results indicate that the hydrate-dissociation zone is strongly affected by the reservoir heterogeneity and shows a unique dissociation front. The gas-production rate is expected to increase with time and reach the considerable value of 3.6 × 104 std m3/d as a result of the significant expansion of the dissociation zone. The numerical model, using a simplified description of porosity, permeability, and hydrate saturation, leads to significant underestimation of gas productivity from the sedimentary-complex hydrate reservoir. The results also suggest that the interbedded-hydrate-occurrence systems might be a better candidate for methane (CH4) gas extraction than the massive hydrate reservoirs.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1129 ◽  
Author(s):  
Na Wei ◽  
Yang Liu ◽  
Zhenjun Cui ◽  
Lin Jiang ◽  
Wantong Sun ◽  
...  

Horizontal well drilling is a highly effective way to develop marine gas hydrate. During the drilling of horizontal wells in the marine gas hydrate layer, hydrate particles and cutting particles will migrate with the drilling fluid in the horizontal annulus. The gravity of cuttings is easy to deposit in the horizontal section, leading to the accumulation of cuttings. Then, a cuttings bed will be formed, which is not beneficial to bring up cuttings and results in the decrease of wellbore purification ability. Then the extended capability of the horizontal well will be restricted and the friction torque of the drilling tool will increase, which may cause blockage of the wellbore in severe cases. Therefore, this paper establishes geometric models of different hole enlargement ways: right-angle expansion, 45-degree angle expansion, and arc expanding. The critical velocity of carrying rock plates are obtained by EDEM and FLUENT coupling simulation in different hydrate abundance, different hydrate-cuttings particle sizes and different drilling fluid density. Then, the effects of hole enlargement way, particle size, hydrate abundance and drilling fluid density on rock carrying capacity are analyzed by utilizing an orthogonal test method. Simulation results show that: the critical flow velocity required for carrying cuttings increases with the increase of the particle size of the hydrate-cuttings particle when the hydrate abundance is constant. The critical flow velocity decreases with the increase of drilling fluid density, the critical flow velocity carrying cuttings decreases with the increase of hydrate abundance when the density of the drilling fluid is constant. Orthogonal test method was used to evaluate the influence of various factors on rock carrying capacity: hydrate-cuttings particle size > hole enlargement way > hydrate abundance > drilling fluid density. This study provides an early technical support for the construction parameter optimization and well safety control of horizontal well exploitation models in a marine natural gas hydrate reservoir.


Sign in / Sign up

Export Citation Format

Share Document