Serum equol, bone mineral density and biomechanical bone strength differ among four mouse strains

2005 ◽  
Vol 16 (12) ◽  
pp. 743-749 ◽  
Author(s):  
Wendy E. Ward ◽  
Susie Kim ◽  
Daphne Chan ◽  
Debbie Fonseca
Bone ◽  
2006 ◽  
Vol 38 (3) ◽  
pp. 27-28 ◽  
Author(s):  
Z.G. Luo ◽  
A.T. Wang ◽  
W.S. Yu ◽  
Y. Zhao ◽  
P. Hu ◽  
...  

2013 ◽  
Vol 144 (5) ◽  
pp. S-86
Author(s):  
Nicholas K. Weber ◽  
Jeff L. Fidler ◽  
Bart L. Clarke ◽  
Sundeep Khosla ◽  
Joel G. Fletcher ◽  
...  

2021 ◽  
Vol 7 ◽  
Author(s):  
Fabio Massimo Ulivieri ◽  
Luca Rinaudo

For a proper assessment of osteoporotic fragility fracture prediction, all aspects regarding bone mineral density, bone texture, geometry and information about strength are necessary, particularly in endocrinological and rheumatological diseases, where bone quality impairment is relevant. Data regarding bone quantity (density) and, partially, bone quality (structure and geometry) are obtained by the gold standard method of dual X-ray absorptiometry (DXA). Data about bone strength are not yet readily available. To evaluate bone resistance to strain, a new DXA-derived index based on the Finite Element Analysis (FEA) of a greyscale of density distribution measured on spine and femoral scan, namely Bone Strain Index (BSI), has recently been developed. Bone Strain Index includes local information on density distribution, bone geometry and loadings and it differs from bone mineral density (BMD) and other variables of bone quality like trabecular bone score (TBS), which are all based on the quantification of bone mass and distribution averaged over the scanned region. This state of the art review illustrates the methodology of BSI calculation, the findings of its in reproducibility and the preliminary data about its capability to predict fragility fracture and to monitor the follow up of the pharmacological treatment for osteoporosis.


Author(s):  
Abin Joy ◽  
Chaitra N ◽  
Ashok M ◽  
Handral M

ABSTRACTObjectives: This study was designed to investigate the antiosteoporotic activity of isolated anthraquinones from Morinda citrifolia fruit extract inovariectomy (OVX) induced osteoporotic rats.Methods: All the rats were divided into 4 groups (n=6 each). Group I (sham control) received vehicle, p.o., Group II OVX control (vehicle, p.o.),Group III was OVX+standard raloxifene (5.4 mg/kg, p.o.), and Group IV was OVX+Physcion (100 mg/kg, p.o.) for 90 days.Results: The daily oral administration of isolated compound physcion (100 mg/kg) for 12 weeks to the rats prevented OVX-induced osteoporosis.This was examined by serum biomarkers such as alkaline phosphatase, calcium, and tartrate resistant acid phosphatase and showed significanteffects (p<0.0001). The femur bone strength assessed by three-point bending test showed improved bone strength in physcion treated rats, andthis was supported by enhanced bone mineral density (p<0.05). The ash parameters of femur bone studied from physcion treated rats exhibited asignificant (p<0.0001) value of ash weight followed by ash calcium content. Further, femur bone histological examination revealed the protectiveeffect of the compound physcion (100 mg/kg) against OVX-induced bone loss in rats, where it showed mineralization of trabecular spaces, improvedbone compactness thereby intact bone architecture.Conclusion: This study concludes that the isolated anthraquinone physcion had a preventive effect against OVX-induced bone loss in rats.Keywords: Morinda citrifolia, Physcion, Osteoporosis, Bone mineral density, Ash mineral content.


1996 ◽  
Vol 6 (S1) ◽  
pp. 215-215 ◽  
Author(s):  
J. A. Calero ◽  
A. D. Delgado ◽  
M. Díaz Curiel ◽  
L. Munuera ◽  
M.E ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document