Load capacity of corroded welded hollow spherical joints subjected to bending moment and axial force

2019 ◽  
Vol 25 ◽  
pp. 100824 ◽  
Author(s):  
Zhongwei Zhao ◽  
Bing Liang ◽  
Haiqing Liu ◽  
Lina Xian
2019 ◽  
Vol 29 (2) ◽  
pp. 101-116
Author(s):  
Peyman Beiranvand ◽  
Matin Abdollahifar ◽  
Ahmad Moradpour ◽  
Saeideh Sadeghi Golmakani

Abstract In this study, a column with section IPE and different lengths, completely embedded in concrete, is modelled by finite element software ABAQUS. Columns under different bi-axial loading were used and graphs of axial force-axial deformation, interaction axial force, and bending moment and column curve were mapped. The results show that the load capacity of the column, with increasing length and also increasing eccentricity of the axial load, will be reduced. With increasing length, the effect of an increased eccentricity of the reduced load capacity was increased. Equations for the design of the column are also presented. The results of the presented equations were compared with the values obtained from finite element and building national institute 10th topic.


2016 ◽  
Vol 129 ◽  
pp. 67-80 ◽  
Author(s):  
Pedro Dias Simão ◽  
Helena Barros ◽  
Carla Costa Ferreira ◽  
Tatiana Marques

2011 ◽  
Vol 255-260 ◽  
pp. 718-721
Author(s):  
Z.Y. Wang ◽  
Q.Y. Wang

Problems regarding the combined axial force and bending moment for the behaviour of semi-rigid steel joints under service loading have been recognized in recent studies. As an extended research on the cyclic behaviour of a bolted endplate joint, this study is performed relating to the contribution of column axial force on the cyclic behaviour of the joint. Using finite element analysis, the deteriorations of the joint performance have been evaluated. The preliminary parametric study of the joint is conducted with the consideration of flexibility of the column flange. The column axial force was observed to significantly influence the joint behaviour when the bending of the column flange dominates the failure modes. The reductions of moment resistance predicted by numerical analysis have been compared with codified suggestions. Comments have been made for further consideration of the influence of column axial load in seismic design of bolted endplate joints.


Author(s):  
Yanping Yao ◽  
Ming-Wan Lu

The criteria of piping seismic design based on linear elastic analysis has been proved to be conservative, which is mainly because the influence of plastic deformation on piping dynamic response is neglected. In the present paper, a pipe under seismic excitation is simplified as an beam with tubular cross section subjected to steady axial force and fully reversed cyclic bending moment, and the elastic-plastic behavior of the pipe is studied. Various behavior of the pipe under different combinations of axial force and cyclic bending moment is discussed and the boundary curve equations between them are obtained. Also the load regime diagram for a pipe which is formed by the boundary curve equations in the loading plane is given, from which the elastic-plastic behavior of the pipe can be determined directly.


Author(s):  
Richard Olson

Current methodologies for predicting the crack opening displacement (COD) of circumferentially through-wall cracked pipe do not include the effect of weld residual stresses (WRS). Even the most advanced COD prediction methodology only includes the effect of applied axial force, bending moment, and crack face pressure. For some years, it has been known that weld residual stresses do alter the COD, but there has been no convenient way to include them in a COD prediction without doing case-specific finite element analyses. This paper documents a generalized solution for including WRS effects on COD. The model uses a closed-form analytic solution to approximate the crack face rotations that the WRS would induce which, subsequently, can be added to the typical axial force-bending-crack face pressure COD solution. The methodology is described and the basic equations for the solution are presented. Following this, application to cases to evaluate the efficacy of the approach are presented which show a mixture of results ranging from amazingly good to “of questionable value” with respect to the FEA results.


2019 ◽  
Vol 12 (1) ◽  
pp. 44-55
Author(s):  
Ayad A. Ramadhan

This paper presented the effect of bending on multi-layer of hollow columns of Hybrid materials (Carbon-Glass /epoxy-Alumina) composite this effect occurred and volume fraction of fibers. An experimental procedure was developed to study the performance of these effects under bending load using a hydraulic bending device type (MATEST. SRL) testing machine. This study has three forms through the selection of columns hollows width to thickness (a/b) (0.5, 1 and 2) with three types of layers of samples (2,4 and8) layers. The ultimate load of failure for each Hybrid/epoxy-Al2O3 had been determined and specified the optimum volume fraction (Vf) due to the effect of mixing 50% and 60% were low in the case for compared 55% volume fraction. To simulate this problem the researcher used Explicit Mesh for AUTODYN under ANSYS-15 software, it was found that maximum bending load for Hybrid/ Epoxy-Al2O3 Specimens, the maximum load of specimens increased with increasing number of layers from 2L to 8L. The results also identified that the maximum load capacity by 55% volume fraction and a/b=0.5 of all composite specimens was highest from the others types of (50% and 60%) volume fractions and (a/b=1 and a/b=2) .Also, the Increasing ratio of stress capacity for specimens have 4 to 2 layers (4/2)  and 8 to 4  (8/4) for experimental results have maximum value with increasing by 48.19%  and 46.84% at (Sp.4#8/Sp.2#4) and (Sp.8#6/Sp.4#6) respectively.


Sign in / Sign up

Export Citation Format

Share Document