scholarly journals Investigation of Load Capacity of Steel Concrete Composite Columns Src Reinforced by IPE

2019 ◽  
Vol 29 (2) ◽  
pp. 101-116
Author(s):  
Peyman Beiranvand ◽  
Matin Abdollahifar ◽  
Ahmad Moradpour ◽  
Saeideh Sadeghi Golmakani

Abstract In this study, a column with section IPE and different lengths, completely embedded in concrete, is modelled by finite element software ABAQUS. Columns under different bi-axial loading were used and graphs of axial force-axial deformation, interaction axial force, and bending moment and column curve were mapped. The results show that the load capacity of the column, with increasing length and also increasing eccentricity of the axial load, will be reduced. With increasing length, the effect of an increased eccentricity of the reduced load capacity was increased. Equations for the design of the column are also presented. The results of the presented equations were compared with the values obtained from finite element and building national institute 10th topic.

2013 ◽  
Vol 19 (5) ◽  
pp. 705-717 ◽  
Author(s):  
Alireza Bahrami ◽  
Wan Hamidon Wan Badaruzzaman ◽  
Siti Aminah Osman

This paper focuses on the performance of a special kind of tapered composite columns, namely tapered concrete-filled steel composite (TCFSC) slender columns, under axial loading. These efficient TCFSC columns are formed by the increase of the mid-height depth and width of straight concrete-filled steel composite (CFSC) slender columns, that is, by the enhancement of the tapered angle (from 0° to 2.75°) of the tapered composite columns from their top and bottom to their mid-height. To investigate the performance of the columns, finite element software LUSAS is employed to carry out the nonlinear analyses. Comparisons of the nonlinear finite element results with the existing experimental results uncover the reasonable accuracy of the proposed modelling. Nonlinear analyses are extensively performed and developed to study effects of different variables such as various tapered angles, steel wall thicknesses, concrete compressive strengths, and steel yield stresses on the performance of the columns. It is concluded that increasing each of these variables considerably enhances the ultimate axial load capacity. Also, enhancement of the tapered angle and/or steel wall thickness significantly improves the ductility. Moreover, confinement effect of the steel wall on the performance of the columns is evaluated. Failure modes of the columns are also presented.


2011 ◽  
Vol 255-260 ◽  
pp. 45-48 ◽  
Author(s):  
Ya Feng Xu ◽  
Xin Zhao ◽  
Yi Fu

Based on experimental research, the bearing performance of the new column (steel tube-reinforced concrete composite columns combination strengthened with angle steel and CFRP) has been studied in detail by finite element method. A finite element model is established based on a series of assumption. The load-displacement curves are obtained. The influence of steel ratio and thickness of CFRP layers to the bearing capacity is analyzed too. The result shows that both the steel ratio and the thickness of CFRP layers have great contribution to the axial load capacity. The finite element analysis results and theoretical analysis which are in good agreement show that simulation results are generally right.


2019 ◽  
Vol 5 (8) ◽  
pp. 1841-1849
Author(s):  
Iqrar Hussain ◽  
Muhammad Yaqub ◽  
Adeel Ehsan ◽  
Safi Ur Rehman

The assessment of the residual strength of post-heated concrete structural members in a professional way is a prime factor to take a decision about the restoration or destruction of fire-damaged structure. This Paper explores the numerical modelling of RC square columns damaged by exposure to heat at 5000C, unjacketed. Software ABAQUS was used for numerical modelling of fire damaged compression member i-e column. The main objective of this study is prediction of axial load and axial deformation of fire damaged concrete using finite element studies. Moreover, a parametric nonlinear finite element (FE) research is carried out to check the effect of viscosity parameters on numerical simulation of fire damaged concrete columns. For the said objectives, numerical simulation of existing experimental study of fire damaged RC columns is conducted with varied values of viscosity parameters. The numerical analysis (Finite Element Modeling) indicated that axial load capacity decreases and axial deformation increases after exposure to fire. The experimental and numerical studies are compared in terms of load displacement analysis. The use of optimum viscosity parameter and its definition to FEM improves significantly the performance of convergence and reduces analysis time of numerical simulations of RC square columns.  Moreover, a good agreement was found between the experimental and the finite model results.


2013 ◽  
Vol 368-370 ◽  
pp. 1404-1409 ◽  
Author(s):  
Yan Peng Zhu ◽  
Xiao Rui Song

By utilizing finite element software MIDAS-GTS, layer structure model is established and the force situation of large section tunnel under the combination of three sets of surrounding rock and three sets of flat ratio is analyzed. Through comparing axial force of anchor, axial force and bending moment of shotcrete and displacement of the lining, the optimal flat ratio is selected. Results can provide reference for the design of the large section highway tunnel.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Daihai Chen ◽  
Yinxin Li ◽  
Zheng Li ◽  
Yilin Fang ◽  
Laijing Ma ◽  
...  

Taking a 62 m CFST bridge with a curved-string truss as the research object, according to its reinforcement scheme, the spatial finite element models of the bridge before and after reinforcement were established by using the general finite element software ANSYS. The natural frequencies of the bridge before and after reinforcement were calculated, and the seismic performance of the bridge was analyzed by using the response spectrum method. The results show that the frequencies of the reinforced bridges increase in varying degrees, especially the vertical and torsional frequencies. Before and after reinforcement, the maximum axial force in the upper chord of the bridge is the largest, and the shear force and bending moment are small. The maximum internal force appears at the two ends of the upper chord. This position should be regarded as the weak link of the bridge seismic resistance. Under the same conditions, the axial force of the bridge after reinforcement is reduced by about 30% compared with that before reinforcement, and the displacement of the bridge after reinforcement is reduced in varying degrees. The reinforcement measures can improve the lateral and vertical stiffness of the bridge, especially the stiffness of the deck system.


2014 ◽  
Vol 1065-1069 ◽  
pp. 840-843
Author(s):  
Rong Yao ◽  
Meng Yun Mao ◽  
Yun Que

There ware numeral analysis by ABAQUS finite element software to discover the pile’s status with unloading abutment in soft ground, three model were built, first model was unloading abutment and pile supported reinforced embankment, second model was only unloading abutment, third model was only pile supported reinforced embankment, the piles horizontal displacement, axial force and bending moment were discussed; the results show that the piles horizontal displacement with pile supported reinforced are smaller than the others models, pile axial force in three model are little difference.


2015 ◽  
Vol 752-753 ◽  
pp. 528-532
Author(s):  
Anis Saggaff ◽  
Khaled Alenezi ◽  
Mahmood Md Tahir ◽  
Talal Alhajri ◽  
Mohamad Ragae

Cold-formed steel (CFS) is known to be a thin section. Thus it is considered a weak slender steel section which limits the compression capacity of the column. The aim of this study was to determine the ultimate capacity of built-up lipped CFS (assembled with ferrocement jacket) as composite column (CFFCC) under axial compression load. Nine specimens of composite columns were prepared and tested. The main parameters that varied in the CFFCC columns were column height, cold-formed steel thickness, and influence of ferrocement jacket. There were are three different heights of the CFFCC composite column namely 2000mm, 3000mm and 4000mm used in this study. All CFFCC columns were tested under axial load by a thick steel plate. The results indicated that ferrocement jacket provided sufficient lateral support to the column web and significantly increased both the strength and ductility of the specimens under axial loading. The strength capacity of CFFCC improved significantly, about 149% greater than that of bare steel column section. It was also found that the axial load capacity of CFS-ferrocement jacket composite columns (CFFCC) had increased significantly (in the range of 20% to 40%) as thickness of CFS increased.


2013 ◽  
Vol 19 (3) ◽  
pp. 433-446 ◽  
Author(s):  
Alireza Bahrami ◽  
Wan Hamidon Wan Badaruzzaman ◽  
Siti Aminah Osman

This paper is concerned with the investigation of concrete-filled steel composite (CFSC) stub columns with bar stiffeners. In order to study the behaviour of the columns, the finite element software LUSAS is used to conduct the non-linear analyses. Results from the non-linear finite element analysis and the corresponding experimental test are compared which reveal the reasonable accuracy of the three-dimensional finite element modelling. A special arrangement of bar stiffeners in the columns with various number, spacing and diameters of the bar stiffeners are developed and studied using the non-linear finite element method. Effects of various variables such as different number and spacing of the bar stiffeners and also steel wall thicknesses on the ultimate axial load capacity and ductility of the columns are examined. Moreover, effects of different diameters of the bar stiffeners, concrete compressive strengths and steel yield stresses on the ultimate axial load capacity of the columns are evaluated. It is concluded from the study that the variables significantly influence the behaviour of the columns. The obtained results from the finite element analyses are compared with those predicted values by the design code EC4 and suggested equations of the previous researches.


2013 ◽  
Vol 376 ◽  
pp. 231-235
Author(s):  
Cheng Li ◽  
Yun Zou ◽  
Jie Kong ◽  
Zhi Wei Wan

Nonlinear numerical analysis for the force performance of frame middle joint is processed in this paper with the finite element software of ABAQUS. Compared with experimental results, numerical analysis results are found to be reasonable. Then the influence of factors such as shaped steel ratio and axial-load ratio are contrastively analyzed. The results show that shaped steel ratio has a greater influence on the bearing capacity and hysteretic performance of the structure, but the axial-load ratio has less influence.


2011 ◽  
Vol 255-260 ◽  
pp. 718-721
Author(s):  
Z.Y. Wang ◽  
Q.Y. Wang

Problems regarding the combined axial force and bending moment for the behaviour of semi-rigid steel joints under service loading have been recognized in recent studies. As an extended research on the cyclic behaviour of a bolted endplate joint, this study is performed relating to the contribution of column axial force on the cyclic behaviour of the joint. Using finite element analysis, the deteriorations of the joint performance have been evaluated. The preliminary parametric study of the joint is conducted with the consideration of flexibility of the column flange. The column axial force was observed to significantly influence the joint behaviour when the bending of the column flange dominates the failure modes. The reductions of moment resistance predicted by numerical analysis have been compared with codified suggestions. Comments have been made for further consideration of the influence of column axial load in seismic design of bolted endplate joints.


Sign in / Sign up

Export Citation Format

Share Document