Comfort and energy consumption optimization in smart homes using bat algorithm with inertia weight

2021 ◽  
pp. 103848
Author(s):  
Mohamad Razwan Abdul Malek ◽  
Nor Azlina Ab Aziz ◽  
Salem Alelyani ◽  
Mohamed Mohana ◽  
Farah Nur Arina Baharudin ◽  
...  
Information ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 108 ◽  
Author(s):  
Abdul Shah ◽  
Haidawati Nasir ◽  
Muhammad Fayaz ◽  
Adidah Lajis ◽  
Asadullah Shah

In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique is to maintain a balance between user comfort and energy requirements, such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gaps in the literature are due to advancements in technology, the drawbacks of optimization algorithms, and the introduction of new optimization algorithms. Further, many newly proposed optimization algorithms have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. Detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes.


Author(s):  
Runjuan Cao ◽  
Yatong Ji ◽  
Taixing Han ◽  
Jingsong Deng ◽  
Liang Zhu ◽  
...  

To enhance the stability and pollutant removal performance of an aerobic granular sludge (AGS), four groups of AGS reactors with different pore sizes of mesh screen (R1 is control reactor,...


2018 ◽  
Vol 2018 ◽  
pp. 1-26
Author(s):  
Ying He ◽  
Jiangping Mei ◽  
Zhiwei Fang ◽  
Fan Zhang ◽  
Yanqin Zhao

Palletizing robot is widely used in logistics operation. At present, people pay attention to not only the loading capacity and working efficiency of palletizing robots, but also the energy consumption in their working process. This paper takes MD1200-YJ palletizing robot as the research object and studies the problem of low energy consumption optimization of joint driving system from the perspective of trajectory optimization. Firstly, a multifactor dynamic model of palletizing robot is established based on the conventional inverse rigid body dynamic model of the robot, the Stribeck friction model and the spring balance torque model. And then based on joint torque, friction torque, motion parameter, and joule’s law, the useful work model, thermal loss model of joint motor, friction energy consumption model of joint system, and total energy consumption model of palletizing robot are established, and through simulation and experiment, the correctness of the multifactor dynamic model and energy consumption model is verified. Secondly, based on the Fourier series approximation method to construct the joint trajectory expression, the minimum total energy consumption as the optimization objective, with coefficients of Fourier series as optimization variables, the motion parameters of initial and final position, and running time constant as constraint conditions, the genetic algorithm is used to solve the optimization problem. Finally, through the simulation analysis the optimized Fourier series motion law and the 3-4-5 polynomial motion law are comprehensively evaluated to verify the effectiveness of the optimization method. Moreover, it provides the theoretical basis for the follow-up research and points out the direction of improvement.


Sign in / Sign up

Export Citation Format

Share Document