Effects of injection timing and rail pressure on particulate size-number distribution of a common rail DI engine fueled with fischer-tropsch diesel synthesized from coal

Author(s):  
Limin Geng ◽  
Yonggang Xiao ◽  
Shijie Li ◽  
Hao Chen ◽  
Xubo Chen
2017 ◽  
Vol 2017.70 (0) ◽  
pp. 209
Author(s):  
Kenta YAMADA ◽  
Atsuyoshi TAKAYAMA ◽  
Yusei MUROYA ◽  
Keisuke MATSUNAGA

2017 ◽  
Vol 67 (4) ◽  
pp. 382
Author(s):  
Jensen Samuel J. ◽  
Paul Pramod M. ◽  
A. Ramesh ◽  
Anand Mammen Thomas ◽  
V. Ramanujachari ◽  
...  

<p class="Abstract">The development of a controller which can be used for engines used in armoured fighting vehicles is discussed. This involved choosing a state of the art reference common rail automotive Diesel engine and setting-up of a transient engine testing facility. The dynamometer through special real-time software was controlled to vary the engine speed and throttle position. The reference engine was first tested with its stock ECU and its bounds of operation were identified. Several software modules were developed in-house in stages and evaluated on special test benches before being integrated and tested on the reference engine. Complete engine control software was thus developed in Simulink and flashed on to an open engine controller which was then interfaced with the engine. The developed control software includes strategies for closed loop control of fuel rail pressure, boost pressure, idle speed, coolant temperature based engine de-rating, control of fuel injection timing, duration and number of injections per cycle based on engine speed and driver input. The developed control algorithms also facilitated online calibration of engine maps and manual over-ride and control of engine parameters whenever required. The software was further tuned under transient conditions on the actual engine for close control of various parameters including rail pressure, idling speed and boost pressure. Finally, the developed control strategies were successfully demonstrated and validated on the reference engine being loaded on customised transient cycles on the transient engine testing facility with inputs based on military driving conditions. The developed controller can be scaled up for armoured fighting vehicle engines.</p>


Author(s):  
Guojin Chen ◽  
Jiawen Wang ◽  
Chang Chen ◽  
Yiming Yuan ◽  
Long Xu

Aiming at the problems of low precision, poor anti-interference and poor follow-up in the control parameters for the diesel engine fuel injection system, this paper studies the control method of the high-pressure common rail electronic control fuel injection system of the diesel engine, constructs the high-pressure common rail fuel injection control system based on the ECU, and establishes the speed segment PID control model of fuel injection quantity, common rail pressure, fuel injection timing and fuel injection rate by using MATLAB/Simulink. The fuel injection quantity and timing are simulated. In order to realize all-round and flexible control of the diesel engine under different working conditions, and to achieve the desired optimal performance in all aspects, the optimization control method of the injection law for the diesel engine is studied. The diesel engine fuel injection control strategy based on speed segment PID and operating parameter adaptation is proposed to realize precise control of the common rail pressure, injection quantity, injection timing and injection rate under different working conditions. The simulation calculation and bench test show that the maximum fluctuation of rail pressure at idle speed is only 5 MPa, and the time to reach stability is only 1.25 s, which greatly improves the control accuracy, anti-interference and follow-up ability of the injection parameters.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1122
Author(s):  
Yew Heng Teoh ◽  
Heoy Geok How ◽  
Ching Guan Peh ◽  
Thanh Danh Le ◽  
Huu Tho Nguyen

The diesel engine is one of the solutions to slow down fossil fuel depletion due to its high efficiency. However, its high pollutant emission limits its usage in many fields. To improve its efficiency and emissions, a conventional mechanical fuel injection system (MFI) was be replaced with common rail direct injection (CRDI) system for the purpose of this study. In this way, injection parameters such as injection timing, injection pressure and multiple injection schemes can be tuned to enhance the engine performance. The rail pressure and engine speed response of the modified diesel engine was tested. It was found that by advancing the start of injection timing (SOI) timing or increasing the rail pressure, the brake torque generated can be increased. Multiple injection schemes can be implemented to reduce the peak heat release rate (HRR). Post injection was observed to increase the late combustion HRR. The maximum pressure rise rate (PRR) can be reduced by applying pilot injection. Further research was conducted on optimizing fuel injector parameters to improve the indicated mean effective pressure (IMEP) consistency and reduce injector power consumption. The consistency of IMEP was indicated by coefficient of variation (CoV) of IMEP. The injector parameters included open time, low time and duty cycle of injector signals. These parameters were optimized by carrying out response surface methodology. The optimized parameters were observed to be 230 µs for open time, 53µs for low time and 27.5% for duty cycle. The percentage of error of CoV of IMEP and injector power were found to be lower than 5% when the predicted results are compared with experimental results.


Author(s):  
Nik Rosli Abdullah ◽  
Rizalman Mamat ◽  
Miroslaw L Wyszynski ◽  
Anthanasios Tsolakis ◽  
Hongming Xu

Fuel ◽  
2021 ◽  
Vol 305 ◽  
pp. 121587
Author(s):  
Panpan Cai ◽  
Chunhua Zhang ◽  
Zheng Jing ◽  
Yiwen Peng ◽  
Jiale Jing ◽  
...  

2000 ◽  
Author(s):  
Francisco Payri ◽  
Jean Arrègle ◽  
Carlos Fenollosa ◽  
Gérard Belot ◽  
Alain Delage ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document