scholarly journals Dental Pulp Tissue Regeneration Using Dental Pulp Stem Cells Isolated and Expanded in Human Serum

2017 ◽  
Vol 43 (4) ◽  
pp. 568-574 ◽  
Author(s):  
Evandro Piva ◽  
Susan A. Tarlé ◽  
Jacques E. Nör ◽  
Duohong Zou ◽  
Elizabeth Hatfield ◽  
...  
Author(s):  
Saaid Ayesh Alshehadat ◽  
Htun Aung Thu ◽  
Suzina Sheikh Abdul Hamid ◽  
Asma Abdullah Nurul ◽  
Samsudin Abdul Rani ◽  
...  

Biology ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 160 ◽  
Author(s):  
Shinichiro Yoshida ◽  
Atsushi Tomokiyo ◽  
Daigaku Hasegawa ◽  
Sayuri Hamano ◽  
Hideki Sugii ◽  
...  

Mesenchymal stem cells (MSCs) have the capacity for self-renewal and multilineage differentiation potential, and are considered a promising cell population for cell-based therapy and tissue regeneration. MSCs are isolated from various organs including dental pulp, which originates from cranial neural crest-derived ectomesenchyme. Recently, dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHEDs) have been isolated from dental pulp tissue of adult permanent teeth and deciduous teeth, respectively. Because of their MSC-like characteristics such as high growth capacity, multipotency, expression of MSC-related markers, and immunomodulatory effects, they are suggested to be an important cell source for tissue regeneration. Here, we review the features of these cells, their potential to regenerate damaged tissues, and the recently acquired understanding of their potential for clinical application in regenerative medicine.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Li Q ◽  

Dental Pulp Stem Cells (DPSCs) are adult stem cells found in dental pulp tissue, and possess the capacity for self-renewal and the potential for multipotent differentiation. DPSCs depend on regulating in vitro microenvironment, and can readily differentiate into osteoblasts, odontoblasts, neurocytes, adipocytes, chondrocytes, myocytes, fibrocytes and many others. In addition, DPSCs play a crucial role in tooth regeneration, bone and nerve repair in current studies of regenerative medicine and tissue engineering. Among them, the influences of stem cell microenvironment or niche on the biological activity of DPSCs are critical and hamper its progress. Herein, we review the influence of culture condition, tissue source, growth factor requirements, and cellular organizational scaffolds and how these features influence the biological characteristics and translational research of DPSCs.


2011 ◽  
Vol 23 (3) ◽  
pp. 325-332 ◽  
Author(s):  
V.T. Sakai ◽  
M.M. Cordeiro ◽  
Z. Dong ◽  
Z. Zhang ◽  
B.D. Zeitlin ◽  
...  

Multipotency is a defining characteristic of post-natal stem cells. The human dental pulp contains a small subpopulation of stem cells that exhibit multipotency, as demonstrated by their ability to differentiate into odontoblasts, neural cells, and vascular endothelial cells. These discoveries highlight the fundamental role of stem cells in the biology of the dental pulp and suggest that these cells are uniquely suited for dental pulp tissue-engineering purposes. The availability of experimental approaches specifically designed for studies of the differentiation potential of dental pulp stem cells has played an important role in these discoveries. The objective of this review is to describe the development and characterization of the Tooth Slice/Scaffold Model of Dental Pulp Tissue Engineering. In addition, we discuss the multipotency of dental pulp stem cells, focusing on the differentiation of these cells into functional odontoblasts and into vascular endothelial cells.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Paula A. Baldión ◽  
Myriam L. Velandia-Romero ◽  
Jaime E. Castellanos

Odontoblasts, the main cell type in teeth pulp tissue, are not cultivable and they are responsible for the first line of response after dental restauration. Studies on dental materials cytotoxicity and odontoblast cells physiology require large quantity of homogenous cells retaining most of the phenotype characteristics. Odontoblast-like cells (OLC) were differentiated from human dental pulp stem cells using differentiation medium (containing TGF-β1), and OLC expanded after trypsinization (EXP-21) were evaluated and compared. Despite a slower cell growth curve, EXP-21 cells express similarly the odontoblast markers dentinal sialophosphoprotein and dentin matrix protein-1 concomitantly with RUNX2 transcripts and low alkaline phosphatase activity as expected. Both OLC and EXP-21 cells showed similar mineral deposition activity evidenced by alizarin red and von Kossa staining. These results pointed out minor changes in phenotype of subcultured EXP-21 regarding the primarily differentiated OLC, making the subcultivation of these cells a useful strategy to obtain odontoblasts for biocompatibility or cell physiology studies in dentistry.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Shion Orikasa ◽  
Nobuyuki Kawashima ◽  
Kento Tazawa ◽  
Kentaro Hashimoto ◽  
Keisuke Sunada-Nara ◽  
...  

AbstractAccelerated dental pulp mineralization is a common complication in avulsed/luxated teeth, although the mechanisms underlying this remain unclear. We hypothesized that hypoxia due to vascular severance may induce osteo/odontoblast differentiation of dental pulp stem cells (DPSCs). This study examined the role of B-cell CLL/lymphoma 9 (BCL9), which is downstream of hypoxia-inducible factor 1α (HIF1α) and a Wnt/β-catenin transcriptional cofactor, in the osteo/odontoblastic differentiation of human DPSCs (hDPSCs) under hypoxic conditions. hDPSCs were isolated from extracted healthy wisdom teeth. Hypoxic conditions and HIF1α overexpression induced significant upregulation of mRNAs for osteo/odontoblast markers (RUNX2, ALP, OC), BCL9, and Wnt/β-catenin signaling target genes (AXIN2, TCF1) in hDPSCs. Overexpression and suppression of BCL9 in hDPSCs up- and downregulated, respectively, the mRNAs for AXIN2, TCF1, and the osteo/odontoblast markers. Hypoxic-cultured mouse pulp tissue explants showed the promotion of HIF1α, BCL9, and β-catenin expression and BCL9-β-catenin co-localization. In addition, BCL9 formed a complex with β-catenin in hDPSCs in vitro. This study demonstrated that hypoxia/HIF1α-induced osteo/odontoblast differentiation of hDPSCs was partially dependent on Wnt/β-catenin signaling, where BCL9 acted as a key mediator between HIF1α and Wnt/β-catenin signaling. These findings may reveal part of the mechanisms of dental pulp mineralization after traumatic dental injury.


Sign in / Sign up

Export Citation Format

Share Document