An integrated critical approach to off-fault strike-slip motion triggered by the 2011 Van mainshock (Mw 7.1), Eastern Anatolia (Turkey): New stress field constraints on subcrustal deformation

2021 ◽  
pp. 101861
Author(s):  
Mustafa Toker ◽  
Ali Pınar ◽  
Nihan Hoşkan
1988 ◽  
Vol 59 (4) ◽  
pp. 305-310 ◽  
Author(s):  
Pradeep Talwani

Abstract The tectonic cause of intraplate earthquakes has remained enigmatic. As newer data became available, several common features were apparent for intraplate earthquakes occurring in a wide variety of geologic terranes. These have been incorporated in the intersection model. Seismicity occurs near the intersection of, and by the reactivation of, preexisting zones of weakness. The intersections are the foci of anomalous stress build up in response to the ambient stress field due to plate tectonic forces. This anomalous stress buildup is relieved by strike slip motion on a suitably oriented fault and, due to kinematic adjustment, is followed by vertical or horizontal movement on the intersecting fault. The intersection model has several elements that complement other models proposed to explain intraplate earthquakes.


2005 ◽  
Vol 27 (8) ◽  
pp. 1379-1398 ◽  
Author(s):  
Guang Zhu ◽  
Yongsheng Wang ◽  
Guosheng Liu ◽  
Manlan Niu ◽  
Chenglong Xie ◽  
...  

2003 ◽  
Vol 75 (2) ◽  
pp. 235-248 ◽  
Author(s):  
Dilce F. Rossetti

The geological characterization of shallow subsurface Neogene deposits in northeastern Pará State using Ground Penetrating Radar (GPR) revealed normal and reverse faults, as well as folds, not yet well documented by field studies. The faults are identified mostly by steeply-dipping reflections that sharply cut the nearby reflections causing bed offsets, drags and rollovers. The folds are recognized by reflections that are highly undulating, configuring broad concave and convex-up features that are up to 50 m wide and 80 to 90 ns deep. These deformation structures are mostly developed within deposits of Miocene age, though some of the faults might continue into younger deposits as well. Although the studied GPR sections show several diffractions caused by trees, differential degrees of moisture, and underground artifacts, the structures recorded here can not be explained by any of these ''noises''. The detailed analysis of the GPR sections reveals that they are attributed to bed distortion caused by brittle deformation and folding. The record of faults and folds are not widespread in the Neogene deposits of the Bragantina area. These GPR data are in agreement with structural models, which have proposed a complex evolution including strike-slip motion for this area from the Miocene to present.


2015 ◽  
Vol 7 (1) ◽  
pp. 459-494
Author(s):  
L. Giambiagi ◽  
S. Spagnotto ◽  
S. M. Moreiras ◽  
G. Gómez ◽  
E. Stahlschmidt ◽  
...  

Abstract. The Cacheuta sub-basin of the Triassic Cuyo Basin is an example of rift basin inversion contemporaneous to the advance of the Andean thrust front, during the Plio-Quaternary. This basin is one of the most important sedimentary basins in a much larger Triassic NNW-trending depositional system along the southwestern margin of the Pangea supercontinent. The amount and structural style of inversion is provided in this paper by three-dimensional insights into the relationship between inversion of rift-related structures and spatial variations in late Cenozoic stress fields. The Plio-Quaternary stress field exhibits important N–S variations in the foreland area of the Southern Central Andes, between 33 and 34° S, with a southward gradually change from pure compression with σ1 and σ2 being horizontal, to a strike-slip type stress field with σ2 being vertical. We present a 3-D approach for studying the tectonic inversion of the sub-basin master fault associated with strike-slip/reverse to strike-slip faulting stress regimes. We suggest that the inversion of Triassic extensional structures, striking NNW to WNW, occurred during the Plio–Pleistocene in those areas with strike-slip/reverse to strike-slip faulting stress regime, while in the reverse faulting stress regime domain, they remain fossilized. Our example demonstrates the impact of the stress regime on the reactivation pattern along the faults.


2002 ◽  
Vol 344 (3-4) ◽  
pp. 207-246 ◽  
Author(s):  
Sema Yurtmen ◽  
Hervé Guillou ◽  
Rob Westaway ◽  
George Rowbotham ◽  
Orhan Tatar

2020 ◽  
Vol 91 (2A) ◽  
pp. 891-900
Author(s):  
Yan Xu ◽  
Keith D. Koper ◽  
Relu Burlacu ◽  
Robert B. Herrmann ◽  
Dan-Ning Li

Abstract Because of the collision of the Indian and Eurasian tectonic plates, the Yunnan Province of southwestern China has some of the highest levels of seismic hazard in the world. In such a region, a catalog of moment tensors is important for estimating seismic hazard and helping understand the regional seismotectonics. Here, we present a new uniform catalog of moment tensor solutions for the Yunnan region. Using a grid-search technique to invert seismic waveforms recorded by the permanent regional network in Yunnan and the 2 yr ChinArray deployment, we present 1833 moment tensor solutions for small-to-moderate earthquakes that occurred between January 2000 and December 2014. Moment magnitudes in the new catalog vary from Mw 2.2 to 6.1, and the catalog is complete above Mw∼3.5–3.6. The moment tensors are constrained to be purely double-couple and show a variety of faulting mechanisms. Normal faulting events are mainly concentrated in northwest Yunnan, while farther south along the Sagaing fault the earthquakes are mostly thrust and strike slip. The remaining area includes all three styles of faulting but mostly strike slip. We invert the moment tensors for the regional stress field and find a strong correlation between spatially varying maximum horizontal stress and Global Positioning System observations of horizontal ground velocity. The stress field reveals clockwise rotation around the eastern Himalayan syntaxis, with northwest–southeast compression to the east of the Red River fault changing to northeast–southwest compression west of the fault. Almost 88% of the centroid depths are shallower than 16 km, consistent with a weak and ductile lower crust.


1985 ◽  
Vol 22 (9) ◽  
pp. 1351-1360 ◽  
Author(s):  
William Bosworth

Many of the dominant outcrop-scale structural features in the lower, clastic thrust sheets of the Humber Arm Allochthon were not generated during the westerly emplacement of the allochthonous terranes of western Newfoundland. Two general groups of structures are abundant in the Humber Arm rocks: (1) east-verging folds accompanied by a weakly to moderately developed slaty cleavage and cut by west-dipping thrust faults; and (2) northeast–southwest-striking high-angle faults, with predominantly normal oblique-slip motion and with larger faults down-stepping to the northwest. Evidence of the earlier, west-directed thrusting (refolded and downward-facing folds, folded thrusts, etc.) is uncommon in the Humber Arm area. Slaty cleavage-generation structures, however, appear to overprint the phacoidal fabrics of the mélange zones that exist between and within thrust slices of the allochthon, making the mélange fabrics the most readily identified features associated with the initial east over west imbrication and emplacement of the allochthon.These observations suggest that the original detachment of the rocks of the Humber Arm Supergroup from their basement (early Taconian deformation) occurred with only limited internal deformation. Mélange zones presently define some or all of the early surfaces of movement. The fully assembled and emplaced allochthonous terrane was subsequently reimbricated on a smaller scale through east-directed thrusting, at which time the allochthon was more pervasively deformed (regional slaty cleavage and fold formation). This may represent late Taconian back thrusting or Acadian shortening. The youngest deformation of the Humber Arm region appears to have been a regional extensional event, with a significant northeast–southwest strike-slip component of movement. This may correlate with the development of Carboniferous strike-slip basins in the present Gulf of St. Lawrence and western Newfoundland. Much of the present structural geometry in the Humber Arm region, including the contacts between ophiolitic and clastic thrust sheets, may have originated during these later two deformational sequences, rather than as a consequence of the initial emplacement history.


Sign in / Sign up

Export Citation Format

Share Document