Can chemical reactivity descriptors explain catalytic reactivity?

Author(s):  
Hiteshi Tandon ◽  
Poonam Yadav ◽  
Tanmoy Chakraborty ◽  
Vandana Suhag
Author(s):  
Kouadio Valery Bohoussou ◽  
Anoubilé Bénié ◽  
Mamadou Guy-Richard Koné ◽  
N’guessan Yao Silvère Diki ◽  
Kafoumba Bamba ◽  
...  

In this work the formation of vinylphosphines was studied through the hydrophosphination reaction. The study aims to rationalize the stereoselectivity of these compounds using quantum DFT methods. This theoretical study of chemical reactivity was conducted at B3LYP/6-311 + G (d, p) level. Global chemical reactivity descriptors, stationary point energies and activation barriers were examined to foretell the relative stability of the stereoisomers formed. The various results obtained have revealed that the addition of arylphosphine to dihalogenoacetylene is stereospecific. The Trans form of vinylphosphines is more stable than the Cis form, when the substituent on phosphorus generates less or no π-conjugations. On the other hand, the Cis isomer is predominant when the aryl radical favors more π-conjugations. The theoretical results obtained are in agreement with the experimental results.


2009 ◽  
Vol 113 (30) ◽  
pp. 8660-8667 ◽  
Author(s):  
Carlos Cárdenas ◽  
Nataly Rabi ◽  
Paul W. Ayers ◽  
Christophe Morell ◽  
Paula Jaramillo ◽  
...  

2017 ◽  
Vol 16 (08) ◽  
pp. 1750076 ◽  
Author(s):  
Alejandro Morales-Bayuelo

Currently, there is increasing interest in the potential of malaria inhibitors in Plasmodium falciparum activity. In this work, is propose a possible alternative to classifying 154 antimalarials, with P. falciparum activity. These antimalarials were synthesized by the Chibale’s group ( http://www.kellychibaleresearch.uct.ac.za/ ), with the goal of finding new insights on the binding pocket of the protein kinase PfPK5, PfPK7, PfCDPK1, PfCDPK4, PfMAP1, and PfPK6 of the malaria parasite. However, there is only information about crystallography of PfPK5 and PfPK7. The protein kinases PfCDPK1, PfCDPK4, PfMAP1, and PfPK6 were modeled using molecular homology. The validation used shows that our homology models can be an alternative for the protein kinases from P. falciparum, unknown today. The antimalarials were classified by taking into account the interactions in the hinge zone. These ligands bind to the kinase through the formation of one of two hydrogen bonds, with the backbone residues of the hinge region connecting the kinase N- and C-terminal loops. These interactions were supported by a reactivity chemistry analysis, using global chemical reactivity descriptors such as chemical potential, hardness, softness, electrophilicity, and the Fukui functions as local reactivity descriptors, within the Density Functional Theory (DFT) context.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Jorge Ignacio Martínez-Araya ◽  
Guillermo Salgado-Morán ◽  
Daniel Glossman-Mitnik

The M06 family of density functionals has been assessed for the calculation of the molecular structure and properties of the Naringin molecule. The chemical reactivity descriptors have been calculated through Conceptual DFT. The active sites for nucleophilic and electrophilic attacks have been chosen by relating them to the Fukui function indices and the dual descriptorf(2)(r). A comparison between the descriptors calculated through vertical energy values and those arising from the Koopmans' theorem approximation has been performed in order to check for the validity of the last procedure.


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Norma Flores-Holguín ◽  
Juan Frau ◽  
Daniel Glossman-Mitnik

Five density functionals, CAM-B3LYP, LC-ωHPBE, MN12SX, N12SX, and ωB97XD, in connection with the Def2TZVP basis set were assessed together with the SMD solvation model for the calculation of the molecular properties, chemical reactivities, and solubilities of some pigments derived from astaxanthin, β-cryptoxanthin, fucoxanthin, myxol, siphonaxanthin, siphonein, and zeaxanthin marine carotenoids in the presence of different solvents (hexane, methanol, ethanol, and water). All the chemical reactivity descriptors for the systems were calculated via conceptual density functional theory (CDFT). Finally, the potential bioavailability and druggability as well as the bioactivity scores for the marine carotenoid pigments were predicted through different methodologies already reported in the literature, which have been previously validated during the study of other natural products obtained from marine sources.


2020 ◽  
Vol 139 (3) ◽  
Author(s):  
Marco Franco-Pérez ◽  
Carlos A. Polanco-Ramírez ◽  
José L. Gázquez ◽  
Paul W. Ayers ◽  
Alberto Vela

2020 ◽  
Vol 72 (4) ◽  
pp. 162-174
Author(s):  
Gheorghe Duca ◽  
Natalia Bolocan

The chemical reactivity descriptors have been calculated through Molecular Electron Density Theory encompassing Conceptual DFT. The validity of �Koopmans� theorem in DFT� (KID) has been assessed by a comparison between the global descriptors (electronegativity, total hardness, and global electrophilicity) calculated through vertical energy values and those arising from the HOMO and LUMO values. These results suggest that the KID procedure is valid and may be used, in conjunction with the B3LYP/3-611G(d, p) level of theory in further studies of related compounds in the aqueous medium. The active sites for nucleophilic and electrophilic attacks have been identified and verified using the local reactivity descriptors: the dual descriptor, the electrophilic and nucleophilic Parr functions, the local reactivity difference index Rk and MEP maps. Obtained results suggest that the antioxidant/antiradical power of investigated compounds may be explained by the highest ambiphilic activation of the oxygen atoms of the hydroxyl groups in the ene-diol moiety.


2020 ◽  
Vol 11 (3) ◽  
pp. 10059-10073

COVID-19 has become a worldwide risk to the healthcare system of practically every nation of the world, which originated from Wuhan, China. To date, no specific drugs are available to treat this disease. The exact source of the SARS-CoV-2 is yet unknown, although the early cases are associated with the Seafood market in Huanan, South China. This manuscript reports the in silico molecular modeling of recent FDA-approved anticancer drugs (Capmatinib, Pemigatinib, Selpercatinib, and Tucatinib) for their inhibitory action against COVID-19 targets. The selected anticancer drugs are docked on SARS-CoV-2 main protease (PDB ID: 6LU7) and SARS-CoV-2 spike glycoprotein (PDB ID: 6M0J) to ascertain the binding ability of these drugs. ADMET parameters of the drugs are assessed, and in addition, DFT calculations are done to investigate the pharmacokinetics, thermal parameters, dipole moments, and chemical reactivity descriptors. The docking energies (ΔG) and the interacting amino acid residues are discussed. Promising molecular docking conclusions have been accomplished, which demonstrated the potential of selected anticancer drugs for plausible drug development to fight COVID-19. Further optimizations with the drug may support the much-needed rapid response to mitigate the pandemic.


2015 ◽  
Vol 14 (04) ◽  
pp. 1550026 ◽  
Author(s):  
Davood Farmanzadeh ◽  
Hamid Rezainejad

In this study, by the density functional theory (DFT) method-based reactivity descriptors, the electronic properties and chemical reactivity of Fe substituted nanocage, FeB35+nN36-n(n = 0, 1), were investigated in gaseous and aqueous phases. The calculated binding energies of Fe atoms revealed that the substituting Fe atom in some locations of nanocage make the system more stable. The calculated global descriptors showed that the substituted Fe remarkably increases the chemical reactivity of B36N36. Also, local descriptors showed that the high reactivity of substituted nanocages is mainly related to Fe atom and these chemical species are more talented for nucleophilic attacks. The results of this work may be useful to investigate the effects of substituted metals in chemical reactivity of BN nanostructures.


Sign in / Sign up

Export Citation Format

Share Document