Scrophularia lucida L. as a valuable source of bioactive compounds for pharmaceutical applications: In vitro antioxidant, anti-inflammatory, enzyme inhibitory properties, in silico studies, and HPLC profiles

2019 ◽  
Vol 162 ◽  
pp. 225-233 ◽  
Author(s):  
Gokhan Zengin ◽  
Azzurra Stefanucci ◽  
Maria João Rodrigues ◽  
Adriano Mollica ◽  
Luisa Custodio ◽  
...  
2020 ◽  
Vol 186 ◽  
pp. 111863 ◽  
Author(s):  
Muhammad Saeed Jan ◽  
Sajjad Ahmad ◽  
Fida Hussain ◽  
Ashfaq Ahmad ◽  
Fawad Mahmood ◽  
...  

2019 ◽  
Vol 27 (14) ◽  
pp. 3097-3109 ◽  
Author(s):  
Siddanagouda R. Shivanagoudra ◽  
Wilmer H. Perera ◽  
Jose L. Perez ◽  
Giridhar Athrey ◽  
Yuxiang Sun ◽  
...  

2021 ◽  
Vol 143 ◽  
pp. 164-175
Author(s):  
Julfikar Ali Junejo ◽  
Kamaruz Zaman ◽  
Mithun Rudrapal ◽  
Ismail Celik ◽  
Emmanuel Ifeanyi Attah

2022 ◽  
Vol 144 ◽  
pp. 464-470
Author(s):  
Sifi Ibrahim ◽  
Yousfi Mohamed ◽  
Benarous Khedidja ◽  
Dzoyem Jean Paul ◽  
Eloff Jacobus Nicolaas

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Damilola Alex Omoboyowa

Abstract Background Inflammation has continued to raise global challenges and Jatropha tanrogenesis (JT) is used traditionally for its management. In this study, the in silico and in vitro anti-inflammatory potential of bioactive sterols were investigated. The active compounds of ethanol extract of JT leaves were identified using Gas chromatography-mass spectrometry (GC.MS) followed by molecular docking against COX-1 and COX-2 using maestro Schrödinger and pharmacokinetic profile prediction using webserver tools. The in vitro anti-inflammatory and anti-oxidantive potentials were investigated using standard protocols. Results GC–MS analysis of ethanol extract of JT leaves revealed the presence of eight (8) compounds, the molecular docking analysis of these compounds demonstrated varying degrees of binding affinities against the target proteins. The extract exhibit concentration dependent anti-oxidant activity with IC50 of 106.383 and 6.00 Fe2+E/g for DPPH and FRAP respectively. The extract showed significant (P < 0.05) reduction in percentage inhibition of hemolysis at 200 µg/ml while non-significant (P > 0.05) increase was observed at 600 and 1000 µg/ml compared to 200 µg/ml of diclofenac sodium. At lower concentration of 25 and 50 µg/ml, percentage inhibition of albumin denaturation was significantly (P < 0.05) higher compared to 200 µg/ml of diclofenac sodium. Drug likeness prediction and ADME/toxicity screening showed that the bioactive compounds possess no side effects. Conclusion The results obtained in this study suggested that, JT leaves possess anti-inflammatory activity and could be used as a source of new drug.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


Sign in / Sign up

Export Citation Format

Share Document