scholarly journals Analytical Lifecycle Management (ALM) and Analytical Quality by Design (AQbD) for analytical procedure development of related substances in tenofovir alafenamide fumarate tablets

Author(s):  
Jianhao Teng ◽  
Chunmei Zhu ◽  
Jinyuan Lyu ◽  
Linyu Pan ◽  
Meng Zhang ◽  
...  
2014 ◽  
Vol 35 (17) ◽  
pp. 2538-2545 ◽  
Author(s):  
Serena Orlandini ◽  
Benedetta Pasquini ◽  
Roberto Gotti ◽  
Alessandro Giuffrida ◽  
Ferdinando Paternostro ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Kyoung Kim ◽  
Sang Cheol Park ◽  
Geonha Park ◽  
Eunjung Choi ◽  
Yura Ji ◽  
...  

AbstractThe present study introduces a systematic approach using analytical quality by design (AQbD) methodology for the development of a qualified liquid chromatographic analytical method, which is a challenge in herbal medicinal products due to the intrinsic complex components of botanical sources. The ultra-high-performance liquid chromatography-photodiode array-mass spectrometry (UHPLC-PDA-MS) technique for 11 flavonoids in Genkwa Flos was utilized through the entire analytical processes, from the risk assessment study to the factor screening test, and finally in method optimization employing central composite design (CCD). In this approach, column temperature and mobile solvent slope were found to be critical method parameters (CMPs) and each of the eleven flavonoid peaks’ resolution values were used as critical method attributes (CMAs) through data mining conversion formulas. An optimum chromatographic method in the design space was calculated by mathematical and response surface methodology (RSM). The established chromatographic condition is as follows: acetonitrile and 0.1% formic acid gradient elution (0–13 min, 10–45%; 13–13.5 min, 45–100%; 13.5–14 min, 100–10%; 14–15 min, 10% acetonitrile), column temperature 28℃, detection wavelength 335 nm, and flow rate 0.35 mL/min using C18 (50 × 2.1 mm, 1.7 μm) column. A validation study was also performed successfully for apigenin 7-O-glucuronide, apigenin, and genkwanin. A few important validation results were as follows: linearity over 0.999 coefficient of correlation, detection limit of 2.87–22.41, quantitation limit of 8.70–67.92, relative standard deviation of precision less than 0.22%, and accuracy between 100.13 and 102.49% for apigenin, genkwanin, and apigenin 7-O-glucuronide. In conclusion, the present design-based approach provide a systematic platform that can be effectively applied to ensure pharmaceutically qualified analytical data from complex natural products based botanical drug.


Author(s):  
Isa Martins Fukuda ◽  
Camila Francini Fidelis Pinto ◽  
Camila dos Santos Moreira ◽  
Alessandro Morais Saviano ◽  
Felipe Rebello Lourenço

2021 ◽  
Vol 12 ◽  
Author(s):  
M. L. Jane Weitzel ◽  
Christina S. Vegge ◽  
Marco Pane ◽  
Virginia S. Goldman ◽  
Binu Koshy ◽  
...  

Probiotics are live microorganisms that confer a health benefit to the host when administered in adequate amounts. This definition links probiotic efficacy to microbial viability. The current gold standard assay for probiotic potency is enumeration using classical microbiology plating-based procedures, yielding results in colony-forming units (CFU). One drawback to plating-based procedures is high variability due to intrinsic and extrinsic uncertainties. These uncertainties make comparison between analytical procedures challenging. In this article, we provide tools to reduce measurement uncertainty and strengthen the reliability of probiotic enumerations by using analytical procedure lifecycle management (APLM). APLM is a tool that uses a step-by-step process to define procedure performance based on the concept that the reportable value (final CFU result) must be fit for its intended use. Once the procedure performance is defined, the information gathered through APLM can be used to evaluate and compare procedures. Here, we discuss the theory behind applying APLM and give practical information about its application to CFU enumeration procedures for probiotics using a simulated example and data set. Data collected in a manufacturer’s development laboratory is included to support application of the concept. Implementation of APLM can lead to reduced variability by identifying specific factors (e.g., the dilution step) with significant impact on the variability and providing insights to procedural modifications that lead to process improvement. Understanding and control of the analytical procedure is improved by using these tools. The probiotics industry can confidently apply the information and analytical results generated to make decisions about processes and formulation, including overage requirements. One benefit of this approach is that companies can reduce overage costs. More reliable procedures for viable cell count determinations will improve the quality evaluation of probiotic products, and hence manufacturing procedures, while ensuring that products deliver clinically demonstrated beneficial doses.


RSC Advances ◽  
2021 ◽  
Vol 11 (45) ◽  
pp. 27820-27831
Author(s):  
Hemanth Kumar Chanduluru ◽  
Abimanyu Sugumaran

Analysing isosorbide dinitrate and hydralazine by using an eco-friendly method is an initial stepping stone towards environmentally benign method development, and its combination with the AQbD makes it the method to use for ages without revalidation.


Sign in / Sign up

Export Citation Format

Share Document