scholarly journals Analytical quality by design methodology for botanical raw material analysis: a case study of flavonoids in Genkwa Flos

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Min Kyoung Kim ◽  
Sang Cheol Park ◽  
Geonha Park ◽  
Eunjung Choi ◽  
Yura Ji ◽  
...  

AbstractThe present study introduces a systematic approach using analytical quality by design (AQbD) methodology for the development of a qualified liquid chromatographic analytical method, which is a challenge in herbal medicinal products due to the intrinsic complex components of botanical sources. The ultra-high-performance liquid chromatography-photodiode array-mass spectrometry (UHPLC-PDA-MS) technique for 11 flavonoids in Genkwa Flos was utilized through the entire analytical processes, from the risk assessment study to the factor screening test, and finally in method optimization employing central composite design (CCD). In this approach, column temperature and mobile solvent slope were found to be critical method parameters (CMPs) and each of the eleven flavonoid peaks’ resolution values were used as critical method attributes (CMAs) through data mining conversion formulas. An optimum chromatographic method in the design space was calculated by mathematical and response surface methodology (RSM). The established chromatographic condition is as follows: acetonitrile and 0.1% formic acid gradient elution (0–13 min, 10–45%; 13–13.5 min, 45–100%; 13.5–14 min, 100–10%; 14–15 min, 10% acetonitrile), column temperature 28℃, detection wavelength 335 nm, and flow rate 0.35 mL/min using C18 (50 × 2.1 mm, 1.7 μm) column. A validation study was also performed successfully for apigenin 7-O-glucuronide, apigenin, and genkwanin. A few important validation results were as follows: linearity over 0.999 coefficient of correlation, detection limit of 2.87–22.41, quantitation limit of 8.70–67.92, relative standard deviation of precision less than 0.22%, and accuracy between 100.13 and 102.49% for apigenin, genkwanin, and apigenin 7-O-glucuronide. In conclusion, the present design-based approach provide a systematic platform that can be effectively applied to ensure pharmaceutically qualified analytical data from complex natural products based botanical drug.

2021 ◽  
Author(s):  
Min Kyoung Kim ◽  
Sang Cheol Park ◽  
Geonha Park ◽  
Eunjung Choi ◽  
Yura Ji ◽  
...  

Abstract The present study introduces a systematic approach using analytical quality by design (AQbD) methodology for the development of a qualified liquid chromatographic analytical method, which is a challenge in herbal medicinal products due to the intrinsic complex components of botanical sources. The ultra-high-performance liquid chromatography-photodiode array-mass spectrometry (UHPLC-PDA-MS) technique for eleven flavonoids in Genkwa Flos was utilized through the entire analytical processes, from the risk assessment study to the factor screening test, and finally in method optimization employing central composite design (CCD). In this approach, column temperature and mobile solvent slope were found to be critical method parameters (CMPs) and each of the eleven flavonoid peak’s resolution values were used as critical method attributes (CMAs) through data mining conversion formulas. An optimum chromatographic method in the design space was calculated by mathematical and response surface methodology (RSM). A validation study was also performed successfully for apigenin 7-O-glucuronide, apigenin, and genkwanin. In conclusion, the present design-based approach provide a systematic platform that can be effectively applied to ensure pharmaceutically qualified analytical data from complex natural products based botanical drug.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2691
Author(s):  
Tim Tome ◽  
Aleš Obreza ◽  
Zdenko Časar

This article presents the development of a reversed-phase ultra-high-performance liquid chromatographic method for determining process-related impurities in ropinirole hydrochloride drug substance applying the analytical quality by design approach. The current pharmacopeial method suffers from selectivity issues due to two coelutions of two pairs of impurities. The development of a new method began with preliminary experiments, based on which the Acquity UPLC BEH C8 was selected as the most appropriate column. The effects of six different critical method parameters (CMPs) were then investigated using a fractional factorial screening design. Column temperature, the ratio of methanol in mobile phase B, and gradient slope turned out to be highly significant CMPs in achieving critical resolutions, and they were further evaluated using a central composite face-centered response-surface design. Mathematical models were created by applying a multiple linear regression method. Based on the elution order of an unknown degradation impurity and impurity C, two design spaces were established, and for each design space an optimal combination of CMPs was determined. The method developed was validated for precision, accuracy, linearity, and sensitivity, and it was proven suitable for determining nine process-related impurities of ropinirole.


2021 ◽  
Vol 12 (3) ◽  
pp. 1709-1717
Author(s):  
Haritha G ◽  
Vijey Aanandhi M ◽  
Shanmugasundaram P

This study explains about the Analytical Quality by Design approach for the optimization of a High-Performance Liquid Chromatography Method for the simultaneous estimation of Metformin and Ertugliflozin in pharmaceutical substance. The study aimed to optimize the High-Performance Liquid Chromatography (HPLC) by means of an analytical target profile in order to achieve good separation of compounds along with acceptable analysis time. Identification of risk factors for variables affects the method efficacy. This leads to the development of an accurate, precise, and economic method. The optimized conditions of the developed method were a stationary phase of a Discovery C18 250 x 4.6mm, 5m and a mobile phase of Orthophosphoric acid buffer (pH 2.2),ACN taken in the ratio 60:40 was selected as mobile phase and detection wavelength of 230nm. The flow rate was selected as 0.98ml/min at 29.150C column temperature. Using the central composite design (CCD) method was optimized. The method is showing the linearity over the concentration range of 25-150µg/ml for Metformin and 0.375-2.25µg/ml for Ertugliflozin. The intra-and inter-day precision were less than 2% of relative standard deviation. Accuracies between  99-102% of the true values.The LOD obtained for Metformin and Ertugliflozin were found to be 59 and 3.7, respectively.  LOQ obtained for Metformin and Ertugliflozin were 77.6 and 5.2, respectively.Under accelerated conditionsdegradation percentage of the drug was found to be less than 10%, and the degradation product peak not affecting the system suitability of Metformin and Ertugliflozin.


Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2841
Author(s):  
Pengfei Gao ◽  
Peiyang Zhang ◽  
Yawen Guo ◽  
Zhaoyuan He ◽  
Yuhao Dong ◽  
...  

A high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) method was developed to simultaneously analyze levamisole (LMS) and mebendazole (MBZ) and its two metabolites, 5-hydroxymebendazole (HMBZ) and 2-amino-5-benzoylbenzimidazole (AMBZ), in poultry muscle (chicken, duck and goose). In the sample preparation process, basic ethyl acetate was used as the extraction agent, and the extracted samples were back-extracted with hydrochloric acid, purified by Oasis MCX solid-phase extraction (SPE) cartridges, and reconstituted in the initial mobile phase after being blown dry with nitrogen. Chromatographic separation was performed on an Xbridge C18 column (4.6 mm × 150 mm, 5 μm) with 0.1% formic acid in water and acetonitrile as the mobile phases, and gradient elution was performed at a flow rate of 0.6 mL/min and a column temperature of 35 °C. In blank poultry muscle samples, the spiked concentrations of LMS, MBZ, HMBZ, and AMBZ were within the range of the limit of quantitation (LOQ) to 25 μg/kg. The peak areas of the four target drugs had a good linear relationship with the concentration, and the determination coefficient (R2) values were higher than 0.9990. The average recoveries of LMS, MBZ, HMBZ, and AMBZ were 86.77–96.94%; the intraday relative standard deviations (RSDs) were 1.75–4.99% at LOQ, 0.5 maximum residue limit (MRL), 1.0 MRL, and 2.0 MRL; the interday RSDs were 2.54–5.52%; and the LODs and LOQs were 0.04–0.30 μg/kg and 0.12–0.80 μg/kg, respectively.


2019 ◽  
Vol 16 ◽  
Author(s):  
Joanna Wittckind Manoel ◽  
Camila Ferrazza Alves Giordani ◽  
Livia Maronesi Bueno ◽  
Sarah Chagas Campanharo ◽  
Elfrides Eva Sherman Schapoval ◽  
...  

Introduction: Impurity analysis is an important step in the quality control of pharmaceutical ingredients and final product. Impurities can arise from drug synthesis or excipients and even at small concentrations may affect product efficacy and safety. In this work two methods using high performance liquid chromatography (HPLC) were developed and validated for the evaluation of besifloxacin and its impurity synthesis, with isocratic elution and another with gradient elution. Method: The analysis by HPLC in isocratic elution mode was performed using a cyano column maintained at 25 °C. The mobile phase was composed by 0.5% triethylamine (pH 3.0): acetonitrile (88:12 v/v) eluted at a flow rate of 1.0 ml/min with detection at 330 nm. The gradient elution method was carried out with the same column and mobile phase components only modifying the rate between organic and aqueous phase during analysis. The procedures have been validated according to internationally accepted guidelines, observing results within acceptable limits. Results: The methods presented were found to be linear in the 140 to 260 µg/ml range for besifloxacin and 0.3 to 2.3 µg/ml for an impurity named A. The limits of detection and quantification were respectively 0.07 and 0.3 µg/ml for impurity A, with a 20 µL injection volume. The precision achieved for all analyses performed provided RSD inter-day equal to 6.47 and 6.36% for impurity A with isocratic elution and gradient, respectively. The accuracy was higher than 99% and robustness exhibited satisfactory results. In the isocratic method an analysis time of 25 min and 15 min was obtained for gradient. For impurity A, the number of theoretical plates in the isocratic mode was about 5000 while in the gradient mode it was about 45000, hence, it made the column more efficient by changing the mobile phase composition during elution. In besifloxacin raw material and in pharmaceutical product used in this study, other related impurities were present but but impurity A was searched for and not detected Conclusion: The proposed methods can be applied for quantitative determination of impurities in the analysis of the besifloxacin raw material, as well as in ophthalmic suspension of the drug, considering the quantitation limit.


Author(s):  
İbrahim Bulduk

AbstractFavipiravir (FVP), a pyrazine analog, has shown antiviral activity against a wide variety of viruses. It is considered to be worth further investigation as a potential candidate drug for COVID-19. It is not officially available in any pharmacopoeia. A rapid, simple, precise, accurate, and isocratic high performance liquid chromatography (HPLC) method has been developed for routine quality control of favipiravir in pharmaceutical formulations. Separation was carried out by C18 column. The mobile phase was a mixture of 50 mM potassium dihydrogen phosphate (pH 2.3) and acetonitrile (90:10, v/v) at a flow rate of 1 mL min−1. The ultraviolet (UV) detection and column temperature were 323 nm, and 30 °C, respectively. The run time was 15 min under these chromatographic conditions. Excellent linear relationship between peak area and favipiravir concentration in the range of 10–100 μg mL−1 has been observed (r2, 0.9999). Developed method has been found to be sensitive (limits of detection and quantification were 1.20 μg mL−1 and 3.60 μg mL−1, respectively), precise (the interday and intraday relative standard deviation (RSD) values for peak area and retention time were less than 0.4 and 0.2%, respectively), accurate (recovery, 99.19–100.17%), specific and robust (% RSD were less than 1.00, for system suitability parameters). Proposed method has been successfully applied for quantification of favipiravir in pharmaceutical formulations.


2008 ◽  
Vol 91 (4) ◽  
pp. 739-743 ◽  
Author(s):  
Andréia de Haro Moreno ◽  
Hérida Regina Nunes Salgado

Abstract A rapid, accurate, and sensitive high-performance liquid chromatographic (HPLC) method was developed and validated for the determination of ceftazidime in pharmaceuticals. The method validation parameters yielded good results and included range, linearity, precision, accuracy, specificity, and recovery. The excipients in the commercial powder for injection did not interfere with the assay. Reversed-phase chromatography was used for the HPLC separation on a Waters C18 (WAT 054275; Milford, MA) column with methanolwater (70 + 30, v/v) as the mobile phase pumped isocratically at a flow rate of 1.0 mL/min. The effluent was monitored at 245 nm. The calibration graph for ceftazidime was linear from 50.0 to 300.0 g/mL. The values for interday and intraday precision (relative standard deviation) were <1. The results obtained by the HPLC method were calculated statistically by analysis of variance. We concluded that the HPLC method is satisfactory for the determination of ceftazidime in the raw material and pharmaceuticals.


2020 ◽  
Vol 103 (5) ◽  
pp. 1223-1229
Author(s):  
Michikazu Tanio ◽  
Toru Nakamura ◽  
Hideki Kusunoki ◽  
Kyohei Ideguchi ◽  
Kazuyuki Nakashima ◽  
...  

Abstract Background Histamine fixed-immunoglobulin formulations, which consisted of 0.15 µg of histamine dihydrochloride and 12 mg of human immunoglobulin in a vial, are used for anti-allergic treatments, and controlling the amounts of histamine in the formulations is essential to avoid histamine intoxication. Objective A high-performance liquid chromatography (HPLC) method for determination of histamine contents of the formulations was established and validated. Methods Histamine extracted from the formulation was labeled with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate and was analyzed by gradient elution HPLC with UV detection at 260 nm. Results The method showed linearity in the range 0.8–2.4 µM (R > 0.999), accuracy (100.1–105.8% recovery), and precision (relative standard deviation ≤ 1.93%). The validated method was applied for five lots of the pharmaceutical, and their histamine contents were determined to be 0.149–0.155 µg/vial. Conclusions These results indicated that the validated method is useful to control amounts of histamine in biopharmaceutical products. Highlights The HPLC method was developed for quantitative determination of histamine content of the histamine fixed-immunoglobulin formulations.


2001 ◽  
Vol 47 ◽  
pp. 9-14
Author(s):  
Svetlana Kulevanova ◽  
Marina Stefova ◽  
Tatjana Kadifkova Panovska ◽  
Jasmina Tonic ◽  
Trajce Stafilov

Assay of flavonoids in extracts of seven Thymus L. (Lamiaceae) species from Macedonia including identification and quantification was performed. Extracts obtained after hydrolysis of air dried samples (A1) were analyzed by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Luteolin and apigenin were identified in comparison to authentic standard substances. The content of total flavonoids in plant samples determined by UV-Vis spectrometry (with AlCl3) ranged from 0.05-0.13 %. Two other extracts were prepared by extraction with a mixture of ethanol:water (7:3, V/V), evaporation until only water remained and extraction first with diethylether (A2) and secondly with ethyl acetate (A3). The content of flavonoids in diethyl-ether and ethyl acetate extracts ranged from 52.5-244.4 mg·ml-1 and 48.7 -117.5 mg·ml-1, respectively. For quantification of luteolin and total flavonoids the HPLC method was applied, using reverse phase column C18, mobile phase consisting of 5% acetic acid and methanol in gradient elution mode and column temperature set to 40 o C. The content of luteolin in the plant samples ranged from 0.23-0.48 % (m/m), while the content of total flavonoids was found to be 0.26-0.52 %.


2020 ◽  
Vol 10 (16) ◽  
pp. 5482
Author(s):  
Beom-Geun Jo ◽  
Kyung-Hwa Kang ◽  
Min Hye Yang

Haedoksamul-tang (HST) is a traditional medical prescription comprising eight medicinal herbs: Angelica gigas, Cnidium officinale, Coptis japonica, Gardenia jasminoides, Paeonia lactiflora, Phellodendron amurense, Rehmannia glutinosa, and Scutellaria baicalensis. HST is used to treat blood circulation disorders and has anti-inflammatory, hemostatic, and anticonvulsant effects. In this study, a high-performance liquid chromatography/photodiode array detector (HPLC–PDA) method was developed and validated for the simultaneous determination of four marker compounds in HST, namely, berberine, palmatine, geniposide, and paeoniflorin. Four standard solutions and HST sample solutions were analyzed using a reverse-phase SunFire®C18 column (4.6 × 250 mm, 5 μm) using a 0.05% aqueous formic acid/methanol gradient. The column temperature, flow rate, injection volume, and wavelengths used were 28 ± 2 ℃, 1.0 mL/min, 10.0 μL, and 230 nm and 240 nm, respectively. Calibration curves of the four marker compounds showed good linearity (r2 ≥ 0.9994), and limits of detection (LODs) and quantification (LOQs) were in the ranges 0.131–0.296 μg/mL and 0.398–0.898 μg/mL, respectively. Ranges of intra- and inter-day precisions and accuracies values were 96.74–102.53% and 97.95–100.83%, respectively, and relative standard deviation (RSD) values were all <4%. Recoveries averaged 92.33–116.72% with RSD values <5%. Quantitative analysis for the four marker compounds showed geniposide (10.77 mg/g) was most abundant in HST.


Sign in / Sign up

Export Citation Format

Share Document