Critical roles of irradiance in the regulation of UVB-induced inflammasome activation and skin inflammation in human skin keratinocytes

Author(s):  
Te-An Lee ◽  
Yi-Ting Huang ◽  
Pa-Fan Hsiao ◽  
Ling-Ya Chiu ◽  
Schu-Rern Chern ◽  
...  
2021 ◽  
Vol 21 (9) ◽  
pp. 4579-4585
Author(s):  
Yasukazu Saitoh ◽  
Asuka Tanaka ◽  
Sayuri Hyodo

Excess ultraviolet (UV) exposure accelerates skin inflammation, melanogenesis, wrinkle formation, photoaging, and carcinogenesis through oxidative stress and deoxyribonucleic acid damage. These deleterious effects to skin are closely associated with UV-induced reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced via nitric oxide (NO·) generation. RNS are known to be responsible for various skin disorders, such as erythema, melanin production, reduced barrier function, and psoriasis. These skin disorders are major cosmetic problems; RNS control, in addition to ROS control, is important for maintaining healthy skin. In the present study, we investigated the cytoprotective effects of polyvinylpyrrolidone-entrapped fullerene (C60/PVP), a water-soluble ROS scavenger, against nitric oxide (NO·) and peroxynitrite (ONOO-)-induced human keratinocyte injuries. Protective effects of C60/PVP on NO·/ONOO--induced cellular damage and intracellular ONOO- generation were evaluated using a NO· donor S-nitroso-N-acetylpenicillamine (SNAP) in human skin epidermal HaCaT keratinocytes. Furthermore, the suppressive effect of C60/PVP on UVB-induced generation of intracellular ONOO- levels was also investigated. C60/PVP exerted suppressive effects on intracellular increases in NO·-induced ONOO- generation and subsequent cellular damage. Additionally, C60/PVP significantly decreased the UVB-induced generation of intracellular ONOO- levels. These findings suggest that C60/PVP could be useful as a cosmetics ingredient for prevention of skin injuries and/or dysfunction from NO·/ONOO--induced effects in human skin keratinocytes.


2015 ◽  
Vol 18 (4) ◽  
pp. 578 ◽  
Author(s):  
Bradley S Simpson ◽  
Xianling Luo ◽  
Jiping Wang ◽  
Yunmei Song ◽  
David Claudie ◽  
...  

Purpose: We have previously reported that the Australian Northern Kaanju (Kuuku I’yu) medicinal plant Dodonaea polyandra has anti-inflammatory activity. This is attributed largely to the presence of clerodane diterpenoids contained within the leaf resin. We envisaged developing a topical preparation to treat indications relating to skin inflammation. However, it was unknown whether the resin could be incorporated into a suitable dosage form while retaining the therapeutic value demonstrated in previous work. Therefore, the following study was undertaken to assess parameters of safety and efficacy for a prototype formulation containing the leaf resin extracted from D. polyandra. Methods: Using the assessment criteria of optimum appearance, tactile feeling, spreadability and odour, 78 different formulations were developed. Formulation stability was assessed using a centrifugal test with preparations displaying phase separation further modified or re-formulated. A prototype formulation containing 5% w/w plant resin was selected and subjected to in vitro release studies. This was quantified through HPLC analysis using two major bioactive diterpenoids as reference. The prototype formulation was tested for efficacy in a TPA-induced acute murine skin inflammation model as well as a 3D human skin model for irritancy/toxicity (Epiderm™). Results: The prototype resin cream was a chartreuse-coloured homogenous semisolid preparation that was readily spreadable upon contact with skin with no sensation of tackiness, residual greasiness, or irritation. The optimized cream showed no phase separation after 30 min centrifugation at 825 g. In the TPA-induced inflammation model, the resin formulation significantly reduced ear thickness and interleukin-1 beta levels in mouse ear tissue. The 5% w/w resin cream formulation showed no irritancy in a 3D human skin model. Conclusions: Our results demonstrate that bioactive resin from D. polyandra can be formulated into a stable and non-irritant semi-solid dosage form and reduce parameters of acute skin inflammation in vivo. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


2007 ◽  
Vol 282 (18) ◽  
pp. 13610-13616 ◽  
Author(s):  
Meilang Xue ◽  
David Campbell ◽  
Christopher J. Jackson

2016 ◽  
Vol 213 (10) ◽  
pp. 2147-2166 ◽  
Author(s):  
Juhan Yoon ◽  
Juan Manuel Leyva-Castillo ◽  
Guoxing Wang ◽  
Claire Galand ◽  
Michiko K. Oyoshi ◽  
...  

Atopic dermatitis (AD) is a Th2-dominated inflammatory skin disease characterized by epidermal thickening. Serum levels of IL-22, a cytokine known to induce keratinocyte proliferation, are elevated in AD, and Th22 cells infiltrate AD skin lesions. We show that application of antigen to mouse skin subjected to tape stripping, a surrogate for scratching, induces an IL-22 response that drives epidermal hyperplasia and keratinocyte proliferation in a mouse model of skin inflammation that shares many features of AD. DC-derived IL-23 is known to act on CD4+ T cells to induce IL-22 production. However, the mechanisms that drive IL-23 production by skin DCs in response to cutaneous sensitization are not well understood. We demonstrate that IL-23 released by keratinocytes in response to endogenous TLR4 ligands causes skin DCs, which selectively express IL-23R, to up-regulate their endogenous IL-23 production and drive an IL-22 response in naive CD4+ T cells that mediates epidermal thickening. We also show that IL-23 is released in human skin after scratching and polarizes human skin DCs to drive an IL-22 response, supporting the utility of IL-23 and IL-22 blockade in AD.


Medicine ◽  
2020 ◽  
Vol 99 (48) ◽  
pp. e23152
Author(s):  
Junqin Liang ◽  
Lina Liu ◽  
Xiaojing Kang ◽  
Fengxia Hu ◽  
Lidan Mao

2017 ◽  
Vol 137 (5) ◽  
pp. S72
Author(s):  
W. Zhang ◽  
B. Gallant ◽  
M. Clark ◽  
A. Madigan ◽  
A. Kraus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document