Photochemical hydrogen evolution on metal ion surface-grafted TiO2-particles prepared by sol/gel method without calcination

Author(s):  
Fazalurahman Kuttassery ◽  
Daisuke Yamamoto ◽  
Siby Mathew ◽  
Sebastian Nybin Remello ◽  
Arun Thomas ◽  
...  
2019 ◽  
Vol 43 (21) ◽  
pp. 8315-8324
Author(s):  
Hui Yang ◽  
Rui Wang ◽  
Yaozu Wang ◽  
Jianzhong Jiang ◽  
Xingzhong Guo

Macroporous europium-doped Ca12Al14O33 (C12A7:Eu3+) was prepared via a sol–gel method followed by heat-treatment, and the resultant macroporous C12A7:Eu3+ shows potential for practical application in metal ion detection and has a good response to Pb2+ ions.


2012 ◽  
Vol 562-564 ◽  
pp. 260-264
Author(s):  
Min Zhong ◽  
Jing Jing Yu ◽  
Zhi Hao Wei ◽  
Ping Zhan Si

Pure TiO2 , Ti 0.75 Fe0.25 O2, Ti0.75 Ni0.25 O2, Ti0.75 Co0.25 O2 nanocrystals were prepared by low temperature sol-gel method. The samples were characterized by using transmission electron microscope, X-ray diffractometer and ultraviolet-visible spectrophotometer to study the effect of transition metal ions on the photocatalytic properties of TiO2 nanocrystals. The results show that the pure TiO2 and Ti0.75 Fe0.25 O2, Ti0.75 Ni0.25 O2, Ti0.75 Co0.25 O2 nanocrystals were granular and the size of which is 3.5, 2.9, 3.6, 3.9 nm, respectively. The titania anatase phases appear in the pure TiO2 , the Ti0.75 Fe0.25 O2, Ti0.75 Ni0.25 O2, Ti0.75 Co0.25 O2. The absorption edge of Ti0.75 Fe0.25 O2occur red shift comparing with that of pure TiO2 and the absorption edge of Ti0.75 Fe0.25 O2and Ti0.75 Fe0.25 O2occur blue shift comparing with that of pure TiO2. The photocatalytic properties of pure TiO2, Ti0.75 Fe0.25 O2, Ti0.75 Fe0.25 O2, Ti0.75 Fe0.25 O2nanocrystals synthesized at low temperature by sol-gel method were investigated by degrading the methyl orange solution under ultraviolet irradiation. The degradation rate of Ti0.75 Fe0.25 O2is the highest (60%) and that of Ti0.75Co0.25O2 (10%) is the lowest among these catalysts after degradation for 120min.The result shows that the photocatalytic property ofTi0.75 Fe0.25 O2nanocrystals synthesized at low temperature is obviously better than that of pure TiO2 and Ti0.75 Fe0.25 O2, Ti0.75 Fe0.25 O2.


2011 ◽  
Vol 393-395 ◽  
pp. 1579-1582
Author(s):  
Yun Lan Xu ◽  
Jin Ping Jia

TiO2/Ti electrode, photoelectrocatalysis (PEC), rotating disk reactor, dye. Abstract: In this work, TiO2/Ti electrode was prepared by sol-gel method and its character was investigated by field emission scanning electron microscope (FESEM), X-ray reflection diffraction (XRD) spectra, UV-Vis diffuse reflection absorption spectra and photoelectro-response analysis. FESEM and XRD analysis demonstrates the TiO2 particles were uniform, about 50 nm and almost anatase, UV-Vis diffuse reflection analysis demonstrates the absoption fringe of TiO2 was 400 nm, and photoelectro-response analysis demonstrates the photoelectro-response capability of the photocatalyst was evident and decreased with the dye solution concenstrate increased. The results of stability and reproducibility of TiO2/Ti electrode demonstrates repetition of both multi-runs of mono-electrode and mono-run of multi-electrodes was excellent, which indicates TiO2/Ti electrode prepared by sol-gel method can degrade dye wastewater high-effectively and stably.


2012 ◽  
Vol 512-515 ◽  
pp. 227-230 ◽  
Author(s):  
Dun Qiang Wang ◽  
Li Yun Cao ◽  
Jian Feng Huang ◽  
Jian Peng Wu

Lithium trivanadate (LiV3O8) powders have many attractive characteristics such as high specific energy density, good rate capacity and long cycle life due to their unique crystal structure and outstanding structure stability as cathode material for rechargeable lithium batteries. LiV3O8 crystallites were synthesized under different conditions via a combined ultrasonic irradiation and sol-gel method. The as-prepared LiV3O8 powders were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) absorption spectra. The thermal decomposition process was investigated using thermogravimetric (TG) and differential scanning calorimetry (DSC). The effects of molar ratios of metal ion/citric acid and calcinations temperature on phases and microstructure of the powders were investigated. Results indicate that calcinations temperatures have significant influence on the particle morphology, particle size and particle size distribution of the powders. The pure and rod-like LiV3O8 powders with an average size of 0.2-1 μm are obtained at 350 and 400 °C. With the increase of calcinations temperature, the powders exhibit preferred growth orientation along (100) planes. The crystallites obtained at 550 and 600 °C are composed by LiV3O8 with a small amount of Li0.3V2O5 phase, both of which exhibit tabular morphologies with an average size of 2-10 μm.


2011 ◽  
Vol 471-472 ◽  
pp. 993-998 ◽  
Author(s):  
Mohammad Reza Golobostanfard ◽  
Reza Ebrahimifard ◽  
Hossein Abdizadeh

TiO2/ZnO Nanocomposite powders with different Zn/Ti ratios were synthesized via sol-gel method. The as prepared and calcined Titania nanopowders were added to the ZnO sols. Also the as prepared and calcined ZnO nanopowders were separately added to the TiO2 sols. However, in the latter case, the nanocomposite never formed due to the high acidity of the sols. After gelation, the powders were dried and calcined at 500°C for 1h. The phase composition, structure, morphology and optoelectrical properties of the powders were characterized by means of X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-Vis photospectroscopy and photoluminescence spectroscopy (PL). The XRD patterns confirm the presence of TiO2 and ZnO crystalline phases in the TiO2 particles/ZnO sol samples. The FESEM micrographs show that TiO2/ZnO nanocomposites heat treated at 500°C were formed with average diameter of about 250nm with 50nm ZnO particles on clusters of 40nm TiO2 particles. It was found that the optoelectronic properties of the nanocomposites were improved according to the UV-Vis and photoluminescence spectroscopy.


Sign in / Sign up

Export Citation Format

Share Document